从1加到99怎样简便运算
1+2+3+……+99
=(1+99)×99÷2
=100×99÷2
=9900÷2
=4950
解题过程:
我们可以很容易看出这是一个等差数列,首相为1,末相为99,公差为1,项数为99。利用等差数列的求和公式可以求解:(首相+末相)*公差再除以2就是答案了。
也可以用高斯算法,我们可以很容易发现1+99=2+98=......,原式中有49个1+99=100所以就是4900,还有一个没有配对的50再加上就是1900+50=4950了。
扩展资料:
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
参考资料来源:百度百科-等差数列
1+2+3+……+99=(1+99)×99÷2=100×99÷2=9900÷2=4950
解题过程:
我们可以很容易看出这是一个等差数列,首相为1,末相为99,公差为1,项数为99。利用等差数列的求和公式可以求解:(首相+末相)*公差再除以2就是答案了。
也可以用高斯算法,我们可以很容易发现1+99=2+98=......,原式中有49个1+99=100所以就是4900,还有一个没有配对的50再加上就是1900+50=4950了。
扩展资料:
1加到100的小故事:高斯求和
德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100的值。
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51
1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为:
(1+100)×100÷2=5050。
= (1+99) + (2+98) + (3+97) + ... + (49 + 51) + 50
= 100 × 49 + 50
= 4950
如有帮助,请及时采纳。
小童鞋,咋不采纳呢?
再用等差公试(首项加末项)乘项数除以2 就是(1+99)乘50除以2=2500