十一题求解 100
2个回答
展开全部
=x(u,v),y=y(u,v)是由方程组xu+y=1、x-yv=0所确定的隐函数
答案
令 y/x = ε,z/x = η.
F(y/x, z/x) = F(ε, η) = 0,
记Fx, Fy, Fz分别表示对x, y, z求偏导;Fε, Fη分别表示对ε, η求偏导
Fx = Fε * d(y/x)/dx + Fη * d(z/x)/dx= -y / x^2 * Fε - z / x^2 * Fη, (1)
Fy = Fε * d(y/x)/dy + Fη * d(z/x)/dy= 1 / x * Fε, (2)
Fz = Fε * d(y/x)/dz + Fη * d(z/x)/dz= 1 / x * Fη, (3)
由隐函数定理:
δz/δx = -Fx / Fz, δz/δy = -Fy / Fz 代入
x(δz/δx)+y(δz/δy) = z 等价于要证: -x * Fx - y * Fy = z * Fz,利用(1),(2),(3)式有:
-x * Fx - y * Fy = -x * (-y / x^2 * Fε - z / x^2 * Fη) - y * 1 / x * Fε
= y/x * Fε + z/x * Fη - y/x * Fε = z/x * Fη = z * Fz.
得证!
答案
令 y/x = ε,z/x = η.
F(y/x, z/x) = F(ε, η) = 0,
记Fx, Fy, Fz分别表示对x, y, z求偏导;Fε, Fη分别表示对ε, η求偏导
Fx = Fε * d(y/x)/dx + Fη * d(z/x)/dx= -y / x^2 * Fε - z / x^2 * Fη, (1)
Fy = Fε * d(y/x)/dy + Fη * d(z/x)/dy= 1 / x * Fε, (2)
Fz = Fε * d(y/x)/dz + Fη * d(z/x)/dz= 1 / x * Fη, (3)
由隐函数定理:
δz/δx = -Fx / Fz, δz/δy = -Fy / Fz 代入
x(δz/δx)+y(δz/δy) = z 等价于要证: -x * Fx - y * Fy = z * Fz,利用(1),(2),(3)式有:
-x * Fx - y * Fy = -x * (-y / x^2 * Fε - z / x^2 * Fη) - y * 1 / x * Fε
= y/x * Fε + z/x * Fη - y/x * Fε = z/x * Fη = z * Fz.
得证!
更多追问追答
追问
没看懂。。。。
追答
那是你的问题
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询