350个叶子节点。
根据二完全叉树的性质:
如果一棵具有n个结点的深度为k的二叉树,它的每一个结点都与深度为k的满二叉树中编号为1~n的结点一一对应,这棵二叉树称为完全二叉树。
可以根据公式进行推导,假设n0是度为0的结点总数(即叶子结点数),n1是度为1的结点总数,n2是度为2的结点总数,则 :
①n= n0+n1+n2 (其中n为完全二叉树的结点总数);又因为一个度为2的结点会有2个子结点,一个度为1的结点会有1个子结点,除根结点外其他结点都有父结点,
②n= 1+n1+2*n2 ;由①、②两式把n2消去得:n= 2*n0+n1-1,由于完全二叉树中度为1的结点数只有两种可能0或1,由此得到n0=n/2 或 n0=(n+1)/2。
简便来算,就是 n0=n/2,其中n为奇数时(n1=0)向上取整;n为偶数时(n1=1)。可根据完全二叉树的结点总数计算出叶子结点数。
则该题叶子结点数根据完全二叉树的概念可知,度为1的结点数要么为1,要么为0,二叉树总结点数n=n0+n1+n2=n/2,得出n0=n/2=700/2=350,所以本题答案是350个叶子结点。
扩展资料:
1、完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。
2、完全二叉树特点
叶子结点只可能在最大的两层上出现,对任意结点,若其右分支下的子孙最大层次为L,则其左分支下的子孙的最大层次必为L 或 L+1;
(1)只允许最后一层有空缺结点且空缺在右边,即叶子结点只能在层次最大的两层上出现;
(2)对任一结点,如果其右子树的深度为j,则其左子树的深度必为j或j+1。 即度为1的点只有1个或0个
参考资料:百度百科-完全二叉树
根据二叉树的性质3可知:叶子结点数n0=n2+1,根据完全二叉树的概念可知,度为1的结点数要么为1,要么为0,二叉树总结点数N=n0+n1+n2=2n0+n1-1,得出n0=(N+1-n1)/2=N/2向上取整,所以本题答案是350个叶子结点。
扩展资料:
完全二叉树的性质:
①n= n0+n1+n2 (其中n为完全二叉树的结点总数);又因为一个度为2的结点会有2个子结点,一个度为1的结点会有1个子结点,除根结点外其他结点都有父结点,
②n= 1+n1+2*n2 ;
由①、②两式把n2消去得:n= 2*n0+n1-1,由于完全二叉树中度为1的结点数只有两种可能0或1,由此得到n0=n/2 或 n0=(n+1)/2。
简便来算,就是 n0=n/2,其中n为奇数时(n1=0)向上取整;n为偶数时(n1=1)。可根据完全二叉树的结点总数计算出叶子结点数。
参考资料:完全二叉树–百度百科
所以
n0+1+n0-1=700
n0=350
前9层总共共有的结点:2^9-1=511
第十层的结点:700-511=189
第九层的结点:2^(9-1)=256
第10层对应第9层的结点有:189/2=94……1
第九层的子结点:256-95=161
第十层子结点:189
子结点总数:189+161=350
你应该可以看懂吧,如果不懂的话,就多看看定义。