设函数f(x)=cos(2x-3π/4)-2√2sin^2x,x∈R
设函数f(x)=cos(2x-3π/4)-2√2sin^2x,x∈R(1)求函数在[π/4,π/2]上的值域(2)求最小的正实数P,使函数f(x)的图像向左平移P个单位所...
设函数f(x)=cos(2x-3π/4)-2√2sin^2x,x∈R(1)求函数在[π/4,π/2]上的值域(2)求最小的正实数P,使函数f(x)的图像向左平移P个单位所得到的函数是偶函数~求具体过程,谢谢啦。
展开
展开全部
y=cos(2x-3π/4)-2√2sin^2x
=cos2xcos3π/4+sin2xsin3π/4-√2(1-cos2x)
=-√2/2cos2x+√2/2sin2x-√2+√2cos2x
=√2/2sin2x+√2/2cos2x-√2
=sin2xcosπ/4+cos2xsinπ/4-√2
=sin(2x+π/4)-√2
(1)
x∈[π/4,π/2]
则2x+π/4∈[3π/4,5π/4]
sin(2x+π/4)∈[3π/4,5π/4]∈[-√2/2,√2/2]
函数在[π/4,π/2]上的值域][-3√2/2,-√2/2]
(2)
y=sin(2x+π/4)-√2
=sin【2(x+π/8)】-√2
再向左平移π/8个单位,再向上平移√2个单位得y=sin【2(x+π/4)】=cos2x是一个偶函数
所以最小的正实数P=π/8
=cos2xcos3π/4+sin2xsin3π/4-√2(1-cos2x)
=-√2/2cos2x+√2/2sin2x-√2+√2cos2x
=√2/2sin2x+√2/2cos2x-√2
=sin2xcosπ/4+cos2xsinπ/4-√2
=sin(2x+π/4)-√2
(1)
x∈[π/4,π/2]
则2x+π/4∈[3π/4,5π/4]
sin(2x+π/4)∈[3π/4,5π/4]∈[-√2/2,√2/2]
函数在[π/4,π/2]上的值域][-3√2/2,-√2/2]
(2)
y=sin(2x+π/4)-√2
=sin【2(x+π/8)】-√2
再向左平移π/8个单位,再向上平移√2个单位得y=sin【2(x+π/4)】=cos2x是一个偶函数
所以最小的正实数P=π/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询