高数极限问题求详细过程解答!
1个回答
展开全部
1. 解:
原式 = { [ (n^2 + 17)^(1/2) – n ] * [
(n^2 + 17)^(1/2) + n ] } / { [ (n(n+1))^(1/2) - (n^2 - 1 )^(1/2)
] * [ (n(n+1))^(1/2) + (n^2 - 1 )^(1/2) ] } * { [
(n(n+1))^(1/2) + (n^2 - 1 )^(1/2) ] / [ (n^2 + 17)^(1/2) + n ] }
= { 17 } /
{ n+1 } * { [ (n(n+1))^(1/2) + (n^2
- 1 )^(1/2) ] / [ (n^2 + 17)^(1/2) + n ] }
= { (17/n )/ (1+1/n) } * { [ (1+1/n
))^(1/2) + (1 – 1/n^2 )^(1/2) ] / [ ( 1 + 17/n^2)^(1/2) + 1 ] } ==> { (0 )/ (1+0) } * { [ (1+0 ))^(1/2) + (1 – 0 )^(1/2) ] /
[ ( 1 + 0)^(1/2) + 1 ] }
= 0
2. 解:
/ e^(-1/x) * sin( 3/x^2 ) + x * arctan(1/x) / ≤ / e^(-1/x) / + (/x/) * (π/2)
ð 0 , ( xà 0- 时),
故 原式 = 0
1. 解:
原式 =
[ 3- (1+x+x^2) ]/[(1-x) (1+x+x^2)]
= [(x+2)( 1-x ) ] / [(1-x) (1+x+x^2)]
= [(x+2)] / [(1+x+x^2)] è [(1+2)] / [(1+1+1^2)] = 2/3 , ( x-->1 时)
原式 = { [ (n^2 + 17)^(1/2) – n ] * [
(n^2 + 17)^(1/2) + n ] } / { [ (n(n+1))^(1/2) - (n^2 - 1 )^(1/2)
] * [ (n(n+1))^(1/2) + (n^2 - 1 )^(1/2) ] } * { [
(n(n+1))^(1/2) + (n^2 - 1 )^(1/2) ] / [ (n^2 + 17)^(1/2) + n ] }
= { 17 } /
{ n+1 } * { [ (n(n+1))^(1/2) + (n^2
- 1 )^(1/2) ] / [ (n^2 + 17)^(1/2) + n ] }
= { (17/n )/ (1+1/n) } * { [ (1+1/n
))^(1/2) + (1 – 1/n^2 )^(1/2) ] / [ ( 1 + 17/n^2)^(1/2) + 1 ] } ==> { (0 )/ (1+0) } * { [ (1+0 ))^(1/2) + (1 – 0 )^(1/2) ] /
[ ( 1 + 0)^(1/2) + 1 ] }
= 0
2. 解:
/ e^(-1/x) * sin( 3/x^2 ) + x * arctan(1/x) / ≤ / e^(-1/x) / + (/x/) * (π/2)
ð 0 , ( xà 0- 时),
故 原式 = 0
1. 解:
原式 =
[ 3- (1+x+x^2) ]/[(1-x) (1+x+x^2)]
= [(x+2)( 1-x ) ] / [(1-x) (1+x+x^2)]
= [(x+2)] / [(1+x+x^2)] è [(1+2)] / [(1+1+1^2)] = 2/3 , ( x-->1 时)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询