已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{1/(an*a(n+1))}的前一百项和为多少?
2个回答
2013-01-30 · 知道合伙人教育行家
关注
展开全部
∵{an}是等差数列
∴S5=5(a1+a5)/2
=5(a1+5)/2
=15
解得:a1=1
则d=(a5-a1)/4=1
∴通项公式:an=a1+(n-1)d=n
则数列{1/(an*a(n+1))}的前一百项和为:
1/(1x2)+1/(2x3)+……+1/(100x101)
=(1-1/2)+(1/2-1/3)+……+(1/100-1/101)
=1-1/2+1/2-1/3+……+1/100-1/101
=1-1/101
=100/101
∴S5=5(a1+a5)/2
=5(a1+5)/2
=15
解得:a1=1
则d=(a5-a1)/4=1
∴通项公式:an=a1+(n-1)d=n
则数列{1/(an*a(n+1))}的前一百项和为:
1/(1x2)+1/(2x3)+……+1/(100x101)
=(1-1/2)+(1/2-1/3)+……+(1/100-1/101)
=1-1/2+1/2-1/3+……+1/100-1/101
=1-1/101
=100/101
展开全部
回答 共1条
检举|今天 09:37wdxf4444|十二级∵{an}是等差数列
∴S5=5(a1+a5)/2
=5(a1+5)/2
=15
解得:a1=1
则d=(a5-a1)/4=1
∴通项公式:an=a1+(n-1)d=n
则数列{1/(an*a(n+1))}的前一百项和为:
1/(1x2)+1/(2x3)+……+1/(100x101)
=(1-1/2)+(1/2-1/3)+……+(1/100-1/101)
=1-1/2+1/2-1/3+……+1/100-1/101
=1-1/101
=100/101
检举|今天 09:37wdxf4444|十二级∵{an}是等差数列
∴S5=5(a1+a5)/2
=5(a1+5)/2
=15
解得:a1=1
则d=(a5-a1)/4=1
∴通项公式:an=a1+(n-1)d=n
则数列{1/(an*a(n+1))}的前一百项和为:
1/(1x2)+1/(2x3)+……+1/(100x101)
=(1-1/2)+(1/2-1/3)+……+(1/100-1/101)
=1-1/2+1/2-1/3+……+1/100-1/101
=1-1/101
=100/101
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询