写一篇有关数学历史与文化的报告,800字以上 155

 我来答
ahut冶金
2013-01-30 · 超过13用户采纳过TA的回答
知道答主
回答量:63
采纳率:0%
帮助的人:31.2万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
汉开
2024-12-11 广告
艺体生在复习文化课时,应注重时间管理,平衡艺术训练与文化学习。制定详细的学习计划,分阶段、有重点地复习各科知识。利用碎片时间巩固基础知识点,多做真题以熟悉考试题型。同时,要找出自己的薄弱环节,针对性地进行强化训练。课堂上紧跟老师节奏,积极参... 点击进入详情页
本回答由汉开提供
550983395
2013-01-31 · TA获得超过153个赞
知道答主
回答量:51
采纳率:0%
帮助的人:25.7万
展开全部
(记得给俺分哦)数学在提出问题和解答问题方面,已经形成了一门特殊的科学。在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。数学家门为了解答这些问题,要花费较大力量和时间。尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。 ◇公元前600年以前 ◇   据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。   公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。   公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。 中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。   公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理" 。 ◇公元前600--1年◇     公元前六世纪,发展了初等几何学(古希腊 泰勒斯)。   约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。   公元前六世纪,印度人求出√2=1.4142156。   公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊 巴门尼德、芝诺等).。   公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。   公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。   公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。   公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。   公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。   公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。   公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。   公元前三世纪,筹算是当时中国的主要计算方法。   公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊 阿波罗尼)。   约公元前一世纪,中国的《周髀算经》发表。其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。   公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。 ◇1-400年◇     继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。   一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。   一世纪左右,写了关于几何学、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。   100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。   150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。   三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。   三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国,赵爽)。   三世纪至四世纪魏晋时期,发明"割圆术",得π=3.1416(中国,刘徽)。   三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国 刘徽)。 四世纪时,几何学著作《数学集成》问世,是研究古希腊数学的手册(古希腊,帕普斯)。 ◇401-1000年◇   五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国 祖冲之)。   五世纪,著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度,阿耶波多)。   六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国,祖暅)。   六世纪,隋代《皇极历法》内,已用"内插法"来计算日、月的正确位置(中国,刘焯)。   七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。给出了ax by=c (a,b,c,是整数)的第一个一般解(印度,婆罗摩笈多)。   七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国,王孝通)。   七世纪,唐代有《"十部算经"注释》。"十部算经"指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国,李淳风等)。 727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国,僧一行)。   九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯,阿尔·花刺子模 )。 ◇1001-1500年◇   1086-1093年,宋朝的《梦溪笔谈》中提出"隙积术"和"会圆术",开始高阶等差级数的研究(中国,沈括)。   十一世纪,第一次解出x2n axn=b型方程的根(阿拉伯,阿尔·卡尔希)。   十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯,卡牙姆)。  十一世纪,解决了"海赛姆"问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等 角(埃及,阿尔·海赛姆)。   十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的"增乘开方法",列出二项式定理系数表,这是现代"组合数学"的早期发现。后人所称的"杨辉三角"即指此法(中国,贾宪)。   十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要著作(印度,拜斯迦罗)。   1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利,费婆拿契 )。   1220年,发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例(意大利,费婆拿契)。 1247年,宋朝的《数书九章》共十八卷,推广了"增乘开方法"。书中提出的联立一次同余式的解法,比西方早五百七十余年(中国,秦九韶)。 1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述"天元术"的著作(中国,李治 )。   1261年,宋朝发表《详解九章算法》,用"垛积术"求出几类高阶等差级数之和(中国, 杨辉)。   1274年,宋朝发表《乘除通变本末》,叙述"九归"捷法,介绍了筹算乘除的各种运算法(中国,杨辉)。   1280年,元朝《授时历》用招差法编制日月的方位表(中国,王恂、郭守敬等)。   十四世纪中叶前,中国开始应用珠算盘。   1303年,元朝发表《四元玉鉴》三卷,把"天元术"推广为"四元术"(中国,朱世杰)。   1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国,约·米勒)。   1494年,发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识( 意大利,帕奇欧里)。◇1501-1600年◇   1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利 ,卡尔达诺、非尔洛)。   1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利,邦别利)。   1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国,韦达)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
chijun89
2013-01-30 · TA获得超过204个赞
知道答主
回答量:94
采纳率:0%
帮助的人:46.3万
展开全部
网上找可以么
追问
可以
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式