求证:当0<x<π/2时 ,tan x>x+(x^3)/3

匿名用户
2013-01-30
展开全部
解法一:令F(x)=tanx-x-x^3/3,等式两边同时求导,得:F’(x)=1+tan^2x-1-x^2=tan^2x-x^2;
根据函数曲线特征可知,当x∈(0,π/2),tanx>x,∴F’(x)>0,F(x)在(0,π/2)内单调递增;
又∵当x=0时,F(0)=0,∴F(x)恒>0,即tanx>x+x^3/3。命题得证。
解法二:由泰勒公式tanx=x+x^3/3+2x^5/15+...,可知x∈(0,π/2)时,F(x)=tanx-x-x^3/3=2x^5/15+...>0,命题得证。
feidao2010
2013-01-30 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
证明:
构造函数f(x)=tanx-x-(x^3)/3
则 f(0)=0
f'(x)=sec²x-1-x²=tan²x-x²=(tanx-x)(tanx+x)
∵ 0<x<π/2 ,
∴ tanx>x>0
∴ tanx-x>0,tanx+x>0
∴ f'(x)>0
即 f(x)在0<x<π/2 上递增
∴ f(x)>f(0)=0
即 tanx-x-(x^3)/3>0
即 tan x>x+(x^3)/3
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式