
简算1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+4+……+50)
2个回答
展开全部
1+.....+n=n(n+1)/2
1/[n(n+1)/2]=2/n-2/(n+1)
所以
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+4+……+50)
=(1/2-1/3+1/3-1/4+。。。。。。+1/50-1/51)*2
=49/51
1/[n(n+1)/2]=2/n-2/(n+1)
所以
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+4+……+50)
=(1/2-1/3+1/3-1/4+。。。。。。+1/50-1/51)*2
=49/51
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询