展开全部
一片草地,每天都匀速长出青草,这片青草可供21头牛吃5周或供18头牛吃8周,那么可供15头牛吃几周?
(18x8-21x5)\(8-5)=13(份)
21x5-13x5=40(份)
40\(15-13)=20(周)
答:可供15头牛吃20周
(18x8-21x5)\(8-5)=13(份)
21x5-13x5=40(份)
40\(15-13)=20(周)
答:可供15头牛吃20周
追问
你还有吗?能发给我吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
那个版本的?
追问
灵宝的
追答
不会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
.100+5-(100-5)=10,即每两支钢笔比每两支圆珠笔贵10圆,即单个贵5圆,所以圆珠笔价格为:
(95-5*5)/(5+5)=7圆,钢笔为7+5=12圆。
如果可以用二元一次方程那就更简单了,不过小学奥数好像没学吧……这个是没用方程的解法。
2。自己列举就完了 没几个 算对就行
3。三个数相同的三位数都是111的倍数 111=3*37
所以所有的自然数组合为:
37*3=111 37*6=222 74*3=222 37*9=333 37*12=444 37*15=555
37*18=666 37*21=777 37*24=888 37*27=999
4.
4小时46分钟为286分钟=45*6+16 即为走了六回 休息了六回 第七次走时到了
实际走路的时间为 40*6+16=256分钟 由于走路速度增加,所以回去的走路所需的时间为256/2=128=30*4+8,所以返回的时间为(30+10)*4+8=168分钟=2小时48分钟
5
A车间生产上衣速度为600/18=100/3件/天,裤子为50件/天
B车间生产上衣速度为600/15=40件/天,裤子为40件/天
由于B生产上衣快 A生产裤子快 所以先单独生产
而B生产上衣的速度跟不上A生产裤子的速度,所以B厂专门生产上衣,由A厂先生产裤子 后生产上衣,即B=40*30=1200件上衣,而A厂生产配套的裤子只需要24天,剩余六天同时生产上衣和裤子 但由于单独生产 所以只需要合理安排时间。上衣用6*(3/5)*100/3=120件,剩余的时间生产裤子为6*2/5*50=120件 刚好配套,即最多可生产1200+120=1320件配套的衣服
方程解法:100/3x+40*30=50(30-x) 求出来X 然后代入 50*(30-x)便可
6。分别为 x,y,z 列方程 7x=1y+2z
7y=10z+1x即 7y-10z=1x带到上式得到12y=18z
7
40|评论(14)
其他回答 共16条
2012-01-04 18:56ufo吸气|四级
小学奥数题80道
六年综合奥数题 工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解: 1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
解: 由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。
解:设停电了x分钟
根据题意列方程 1-1/120*x=(1-1/60*x)*2 解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
解: 4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除
同样的道理,100~900 百位上的数字之和为4500 同样被9整除
也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;
同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005
从1000~1999千位上一共999个“1”的和是999,也能整除;
200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...
解: (A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,
问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100
[提问者认可]|1|评论(2)
2012-02-24 09:33数学学数学数学|六级
http://www.aoshu.com/tiku/ao6/
这里多的是,自己看看吧!
[提问者认可]|0|评论
2010-02-26 17:41ll风雨happy|六级
应用题:
六年级有三个班,一班与二班的学生人数和比三班学生人数多3/4,二班与三班 的学生人数和比六年级学生总数2/3多3人,已知二班有学生43人,六年级共有学生多少人?
一个圆锥形容器中装有水4升(顶点向下装水),这时水面高度正好是圆锥高度的1/2,水面半径是容器半径的1/2,这个容器还能装多少升水?
加工一批零件,甲独做要20小时,乙独做要30小时,现在两人合做,每小时甲比乙多做40个,这批零件有多少个?
某校六年级进行一次数学竞赛,设一、二、三等奖,其中获得一等奖的占获奖总数的5分之1,获二等奖的与获三等奖的人数的比是3:5,获得二等奖的人数比获三等奖人数少4人,一共有多少人获奖?
小明读一本书,7天后还剩全书的4分之1,以后5天共读了120页,正好读完,小明读这本书平均每天读多少页?
一本书已经看了58页,还剩下全书页数的25%少1页,这本书共有多少页?
一位老奶奶去市场买菜,去时要走8分钟,回来是因为提着东西比过时慢了2分钟,在去的路上第四分钟看到维修工在维修电缆,奶奶在回来的路上第几分钟再次看到维修工?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
18.已知某一铁桥长1000米,现有一列火车从桥上通过,测得火车开始上桥到完全通过桥共用一分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和速度。
19.有一位妇女在河边洗碗,旁人看见以后问她为什么要用这么多碗?她回答说,家中来了许多客人,他们每两个人合用一只菜碗,每3个人合用一只汤碗,每4个人合用一只饭碗,共用了65只碗.她家究竟来了多少客人?
20.小明有一包饼干,4个一数,5个一数,6个一数都多一个,小明的这包饼干至少有多少个?
1.小明看一本书,原计划每天看35页,32天看完。实际每天比计划多看5页,实际用多少天看完?
2.修一条路,原计划每天修0.4千米,70天可以修完。实际每天修的米数是计划的1.25倍。实际用多少天完成?
3.绿化队植树,计划8天完成任务。实际每天植树240棵,7天就完成了全部的植树任务。实际比计划每天多植树多少棵?
4.某街道居委会慰问军烈属,给他们送去红糖和白糖。每到一户送去2袋红糖和5袋白糖,送到最后一户时,红糖正好送完,还剩下10袋白糖。已知带去的白糖的袋数是红糖袋数的3倍,那么带去的红糖、白糖各多少袋?
5.服装厂要加工一批服装。第一车间和第二车间同时加工60天正好完成。已知第一车间加工的服装占服装总数的45%,第二车间每天加工132件。第一车间每天加工多少件?
6.洗衣机厂计划生产一批洗衣机。结果9天恰好完成了计划的37.5%。照这样计算,完成计划还要多少天?
7.有一堆煤可以烧120天。由于改进烧煤技术,每天节约用煤0.25吨,结果这堆煤烧了150天。这堆煤共有多少吨?
8.牵走7头黄牛放在水牛群之中,那么这三群牛的头数正好相等。问奶牛有多少头?
9.甲乙两个车间加工一批同样的零件。如果甲车间先加工35个,然后乙先加工1天,然后乙车间再开始加工,经过5天后两车间加工的零件数相等。那么乙车间一天加工多少个零件?
12.有100千克青草,含水量为66%,晾晒后含水量降到15%。这些青草晾晒后重多少千克?
13.将一个正方形的一边减少1/5,另一边增加 4米,得到一个长方形。这个长方形与原来正方形面积相等。那么正方形面积有多少平方米?
14.某车间加工甲、乙两种零件。已加工好的零件中甲种零件占30%,后来又加工好了24个乙种零件,这时甲种零件占25%。那么现在已加工好两种零件共多少个?
15.甲、乙、丙三人共生产零件1760个。如果甲少生产2/9,乙多生产80个,那么甲、乙、丙三人生产零件的个数相等。甲、乙、丙三人各生产了多少个?
16.小明今年的年龄是他爸爸年龄的1/6,15年后他的年龄是他爸爸年龄的4/9。小明和他爸爸今年各多少岁?
17.某校有学生314人,其中男生人数的2/3比女生人数的4/5少40人。这个学校男生、女生各多少人?
18.甲、乙两班人数相等,各有一些同学参加了数学小组。甲班参加数学小组的人数恰好是乙班没参加数学小组人数的1/3;乙班参加数学小组的人数恰好是甲班没参加数学小组人数的1/4。那么甲班没参加数学小组的人数是乙班没参加数学小组人数的几分之几?
19.容器里放着某种浓度的酒精溶液若干升,加 1升水后纯酒精含量为25%;再加1升纯酒精,容器里纯酒精含量为40%。那么原来容器里的酒精溶液共几升?浓度为百分之几?
20.甲、乙、丙三人合抄一份稿件,1小时可以完成。如果甲、乙二人合抄,要80分钟完成;如果乙、丙二人合抄,要100分钟完成。如果这份稿件由乙一人独抄,要几小时完成?
21.一件工程,甲独做,20天可以完成;乙独做,30天可以完成。现在两人合做,中间甲休息了3天,乙休息了若干天,结果经过16天才完成。问乙休息了几天?
22.注满一池水,只打开甲管,要8小时;只打开乙管,要12小时;只打开丙管,要15小时。今开始只打开甲、乙两管,中途关掉甲、乙两管,然后打开丙管,前后共用了10小时才注满一池水。那么打开丙管注水几小时?
23.某工程队承建一项工程,要用12天完成。如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?
24.甲、乙两队合干一项工程,甲队先独干了6天后,乙队参加和甲队一起干,又过了4天完成了全工程的1/3。又过了10天正好完成了全工程的3/4。因甲队另有任务调出,乙队继续工作,直到完成全工程。从开始到完工用了多少天?
25.甲、乙二人同时从A、B两地出发,各自去B、A两地,二人速度比为7∶6。二人相遇后继续向前行进,这时乙的速度比原来速度每小时增加来的速度。
1.两个小队割青草,每个小队割3捆,每捆重8千克。一共割了多少千克?
2.张家庄小学新修9个教室,每个教室有6扇窗子,每扇窗子安8块玻璃,一共要安多少块玻璃?
3.每个书架有5层,每层放30本书,3个书架一共放多少本书?
4.学校举行广播操表演。三、四、五年级各有3个班,每班选16人参加。参加表演的一共有多少人?
连除应用题(两种方法解答)
1.商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?
2.三年级有2个班,每个班有43个同学,一共栽树258棵,平均每个同学栽树多少棵?
3.百贷商店卖出3箱上衣,每箱20件,一共卖了720元,每件上衣的价钱是多少元?
4.学校给三好学生买奖品,买了2盒钢笔,每盒10支,一共用去80元。每支钢笔多少元?
这应该是答案:
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
足够了吧,希望能帮到你啊!
1|评论
2010-12-31 16:28小胡萝卜轩|四级
??!!
题呢?
2|评论(1)
2010-12-31 21:52第61秒钟|四级
自行车队伍出发15分钟后,通讯员骑摩托去追赶他们,在距离出发地18千米的地方赶上了自行车队,。然后通讯员立刻返回出发地,到后又返回追自行车队,再追上时恰好距离出发点27千米,求自行车和摩托车的速度
自行车的速度为0.96km/min
摩托车的速度为4.8 km/min
解答过程: 通讯员在18千米处追上自行车之后返回又追上自行车,这段时间内通讯员路程为18+27=45千米,而自行车路程为9千米。则可得出摩托车速度为自行车的5倍。
另外:第一次追赶上自行车的路程为18km, 第二次路程为45千米,则可以得出第二次花的时间是第一次的2.5倍。我们设第一次通讯员从起点到18千米处的时间为y. 自行车的速度为x.
则可列一元二次方程式如下:
(15+y)*x =18
2.5y * 5x = 45 -->xy=45/12.5 = 3.6 代入上面的方程式,15x+3.6=18 得出x=0.96
即自行车速度为0.96千米每分钟,摩托车速度为 5*0.96=4.8千米每分钟
3|评论(2)
2011-01-09 16:23wunanxiu|一级
设圆珠笔是y,钢笔是x
则原式=5x+5y+5=100元
5x+5y=95元
7x+3y-5=100元
7x+3y=105元
105-95=10元
10÷2=5元 x-5=y
95-(5×5)=70元
70÷(5+5)=7元
7+5=12元
答:钢笔十二元,圆珠笔七元。
1|评论
2012-01-04 14:04ASB650|三级
什么问题啊 要买书吗
0|评论
2012-01-04 19:09jjkszl888|二级
.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
答案是10:20
解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
1|评论
2012-01-13 18:11wrist561|五级
四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五70、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加
追问
不够
0|评论
检举|2012-03-07 21:28天天牛吃草|二级
有两本书叫仁华学校奥林匹克数学思维训练导引和教程,一个有
(95-5*5)/(5+5)=7圆,钢笔为7+5=12圆。
如果可以用二元一次方程那就更简单了,不过小学奥数好像没学吧……这个是没用方程的解法。
2。自己列举就完了 没几个 算对就行
3。三个数相同的三位数都是111的倍数 111=3*37
所以所有的自然数组合为:
37*3=111 37*6=222 74*3=222 37*9=333 37*12=444 37*15=555
37*18=666 37*21=777 37*24=888 37*27=999
4.
4小时46分钟为286分钟=45*6+16 即为走了六回 休息了六回 第七次走时到了
实际走路的时间为 40*6+16=256分钟 由于走路速度增加,所以回去的走路所需的时间为256/2=128=30*4+8,所以返回的时间为(30+10)*4+8=168分钟=2小时48分钟
5
A车间生产上衣速度为600/18=100/3件/天,裤子为50件/天
B车间生产上衣速度为600/15=40件/天,裤子为40件/天
由于B生产上衣快 A生产裤子快 所以先单独生产
而B生产上衣的速度跟不上A生产裤子的速度,所以B厂专门生产上衣,由A厂先生产裤子 后生产上衣,即B=40*30=1200件上衣,而A厂生产配套的裤子只需要24天,剩余六天同时生产上衣和裤子 但由于单独生产 所以只需要合理安排时间。上衣用6*(3/5)*100/3=120件,剩余的时间生产裤子为6*2/5*50=120件 刚好配套,即最多可生产1200+120=1320件配套的衣服
方程解法:100/3x+40*30=50(30-x) 求出来X 然后代入 50*(30-x)便可
6。分别为 x,y,z 列方程 7x=1y+2z
7y=10z+1x即 7y-10z=1x带到上式得到12y=18z
7
40|评论(14)
其他回答 共16条
2012-01-04 18:56ufo吸气|四级
小学奥数题80道
六年综合奥数题 工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解: 1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
解: 由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。
解:设停电了x分钟
根据题意列方程 1-1/120*x=(1-1/60*x)*2 解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
解: 4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除
同样的道理,100~900 百位上的数字之和为4500 同样被9整除
也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;
同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005
从1000~1999千位上一共999个“1”的和是999,也能整除;
200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...
解: (A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,
问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100
[提问者认可]|1|评论(2)
2012-02-24 09:33数学学数学数学|六级
http://www.aoshu.com/tiku/ao6/
这里多的是,自己看看吧!
[提问者认可]|0|评论
2010-02-26 17:41ll风雨happy|六级
应用题:
六年级有三个班,一班与二班的学生人数和比三班学生人数多3/4,二班与三班 的学生人数和比六年级学生总数2/3多3人,已知二班有学生43人,六年级共有学生多少人?
一个圆锥形容器中装有水4升(顶点向下装水),这时水面高度正好是圆锥高度的1/2,水面半径是容器半径的1/2,这个容器还能装多少升水?
加工一批零件,甲独做要20小时,乙独做要30小时,现在两人合做,每小时甲比乙多做40个,这批零件有多少个?
某校六年级进行一次数学竞赛,设一、二、三等奖,其中获得一等奖的占获奖总数的5分之1,获二等奖的与获三等奖的人数的比是3:5,获得二等奖的人数比获三等奖人数少4人,一共有多少人获奖?
小明读一本书,7天后还剩全书的4分之1,以后5天共读了120页,正好读完,小明读这本书平均每天读多少页?
一本书已经看了58页,还剩下全书页数的25%少1页,这本书共有多少页?
一位老奶奶去市场买菜,去时要走8分钟,回来是因为提着东西比过时慢了2分钟,在去的路上第四分钟看到维修工在维修电缆,奶奶在回来的路上第几分钟再次看到维修工?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
18.已知某一铁桥长1000米,现有一列火车从桥上通过,测得火车开始上桥到完全通过桥共用一分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和速度。
19.有一位妇女在河边洗碗,旁人看见以后问她为什么要用这么多碗?她回答说,家中来了许多客人,他们每两个人合用一只菜碗,每3个人合用一只汤碗,每4个人合用一只饭碗,共用了65只碗.她家究竟来了多少客人?
20.小明有一包饼干,4个一数,5个一数,6个一数都多一个,小明的这包饼干至少有多少个?
1.小明看一本书,原计划每天看35页,32天看完。实际每天比计划多看5页,实际用多少天看完?
2.修一条路,原计划每天修0.4千米,70天可以修完。实际每天修的米数是计划的1.25倍。实际用多少天完成?
3.绿化队植树,计划8天完成任务。实际每天植树240棵,7天就完成了全部的植树任务。实际比计划每天多植树多少棵?
4.某街道居委会慰问军烈属,给他们送去红糖和白糖。每到一户送去2袋红糖和5袋白糖,送到最后一户时,红糖正好送完,还剩下10袋白糖。已知带去的白糖的袋数是红糖袋数的3倍,那么带去的红糖、白糖各多少袋?
5.服装厂要加工一批服装。第一车间和第二车间同时加工60天正好完成。已知第一车间加工的服装占服装总数的45%,第二车间每天加工132件。第一车间每天加工多少件?
6.洗衣机厂计划生产一批洗衣机。结果9天恰好完成了计划的37.5%。照这样计算,完成计划还要多少天?
7.有一堆煤可以烧120天。由于改进烧煤技术,每天节约用煤0.25吨,结果这堆煤烧了150天。这堆煤共有多少吨?
8.牵走7头黄牛放在水牛群之中,那么这三群牛的头数正好相等。问奶牛有多少头?
9.甲乙两个车间加工一批同样的零件。如果甲车间先加工35个,然后乙先加工1天,然后乙车间再开始加工,经过5天后两车间加工的零件数相等。那么乙车间一天加工多少个零件?
12.有100千克青草,含水量为66%,晾晒后含水量降到15%。这些青草晾晒后重多少千克?
13.将一个正方形的一边减少1/5,另一边增加 4米,得到一个长方形。这个长方形与原来正方形面积相等。那么正方形面积有多少平方米?
14.某车间加工甲、乙两种零件。已加工好的零件中甲种零件占30%,后来又加工好了24个乙种零件,这时甲种零件占25%。那么现在已加工好两种零件共多少个?
15.甲、乙、丙三人共生产零件1760个。如果甲少生产2/9,乙多生产80个,那么甲、乙、丙三人生产零件的个数相等。甲、乙、丙三人各生产了多少个?
16.小明今年的年龄是他爸爸年龄的1/6,15年后他的年龄是他爸爸年龄的4/9。小明和他爸爸今年各多少岁?
17.某校有学生314人,其中男生人数的2/3比女生人数的4/5少40人。这个学校男生、女生各多少人?
18.甲、乙两班人数相等,各有一些同学参加了数学小组。甲班参加数学小组的人数恰好是乙班没参加数学小组人数的1/3;乙班参加数学小组的人数恰好是甲班没参加数学小组人数的1/4。那么甲班没参加数学小组的人数是乙班没参加数学小组人数的几分之几?
19.容器里放着某种浓度的酒精溶液若干升,加 1升水后纯酒精含量为25%;再加1升纯酒精,容器里纯酒精含量为40%。那么原来容器里的酒精溶液共几升?浓度为百分之几?
20.甲、乙、丙三人合抄一份稿件,1小时可以完成。如果甲、乙二人合抄,要80分钟完成;如果乙、丙二人合抄,要100分钟完成。如果这份稿件由乙一人独抄,要几小时完成?
21.一件工程,甲独做,20天可以完成;乙独做,30天可以完成。现在两人合做,中间甲休息了3天,乙休息了若干天,结果经过16天才完成。问乙休息了几天?
22.注满一池水,只打开甲管,要8小时;只打开乙管,要12小时;只打开丙管,要15小时。今开始只打开甲、乙两管,中途关掉甲、乙两管,然后打开丙管,前后共用了10小时才注满一池水。那么打开丙管注水几小时?
23.某工程队承建一项工程,要用12天完成。如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?
24.甲、乙两队合干一项工程,甲队先独干了6天后,乙队参加和甲队一起干,又过了4天完成了全工程的1/3。又过了10天正好完成了全工程的3/4。因甲队另有任务调出,乙队继续工作,直到完成全工程。从开始到完工用了多少天?
25.甲、乙二人同时从A、B两地出发,各自去B、A两地,二人速度比为7∶6。二人相遇后继续向前行进,这时乙的速度比原来速度每小时增加来的速度。
1.两个小队割青草,每个小队割3捆,每捆重8千克。一共割了多少千克?
2.张家庄小学新修9个教室,每个教室有6扇窗子,每扇窗子安8块玻璃,一共要安多少块玻璃?
3.每个书架有5层,每层放30本书,3个书架一共放多少本书?
4.学校举行广播操表演。三、四、五年级各有3个班,每班选16人参加。参加表演的一共有多少人?
连除应用题(两种方法解答)
1.商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?
2.三年级有2个班,每个班有43个同学,一共栽树258棵,平均每个同学栽树多少棵?
3.百贷商店卖出3箱上衣,每箱20件,一共卖了720元,每件上衣的价钱是多少元?
4.学校给三好学生买奖品,买了2盒钢笔,每盒10支,一共用去80元。每支钢笔多少元?
这应该是答案:
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
足够了吧,希望能帮到你啊!
1|评论
2010-12-31 16:28小胡萝卜轩|四级
??!!
题呢?
2|评论(1)
2010-12-31 21:52第61秒钟|四级
自行车队伍出发15分钟后,通讯员骑摩托去追赶他们,在距离出发地18千米的地方赶上了自行车队,。然后通讯员立刻返回出发地,到后又返回追自行车队,再追上时恰好距离出发点27千米,求自行车和摩托车的速度
自行车的速度为0.96km/min
摩托车的速度为4.8 km/min
解答过程: 通讯员在18千米处追上自行车之后返回又追上自行车,这段时间内通讯员路程为18+27=45千米,而自行车路程为9千米。则可得出摩托车速度为自行车的5倍。
另外:第一次追赶上自行车的路程为18km, 第二次路程为45千米,则可以得出第二次花的时间是第一次的2.5倍。我们设第一次通讯员从起点到18千米处的时间为y. 自行车的速度为x.
则可列一元二次方程式如下:
(15+y)*x =18
2.5y * 5x = 45 -->xy=45/12.5 = 3.6 代入上面的方程式,15x+3.6=18 得出x=0.96
即自行车速度为0.96千米每分钟,摩托车速度为 5*0.96=4.8千米每分钟
3|评论(2)
2011-01-09 16:23wunanxiu|一级
设圆珠笔是y,钢笔是x
则原式=5x+5y+5=100元
5x+5y=95元
7x+3y-5=100元
7x+3y=105元
105-95=10元
10÷2=5元 x-5=y
95-(5×5)=70元
70÷(5+5)=7元
7+5=12元
答:钢笔十二元,圆珠笔七元。
1|评论
2012-01-04 14:04ASB650|三级
什么问题啊 要买书吗
0|评论
2012-01-04 19:09jjkszl888|二级
.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
答案是10:20
解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
1|评论
2012-01-13 18:11wrist561|五级
四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五70、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加
追问
不够
0|评论
检举|2012-03-07 21:28天天牛吃草|二级
有两本书叫仁华学校奥林匹克数学思维训练导引和教程,一个有
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询