高等数学微积分问题

1.设p(x)在R上连续且不恒等于0,y1(x),y2(x)是微分方程y’+p(x)y=0的两个不同的特解,则y1(x)-y2(x)在任何一点不等于0这个结论为什么是正确... 1.设p(x)在R上连续且不恒等于0,y1(x),y2(x)是微分方程y’+p(x)y=0的两个不同的特解,则y1(x)-y2(x)在任何一点不等于0这个结论为什么是正确的?
求详解,万分感谢!!!

2.
设p(x)在[a,正无穷大)上连续非负,如果微分方程y’+p(x)y=0的每一个特解y(x)都满足lim(x→正无穷大)y(x)=0,则p(x)必然满足( )
A.lim(x→正无穷大)p(x)=0
B.lim(x→正无穷大)p(x)=正无穷大
C.p(x)在a到正无穷大上的广义积分收敛
D.p(x)在a到正无穷大上的广义积分发散

请对每个选项做出详解,万分感谢!!!
展开
lyuzxz
2013-01-31 · TA获得超过7625个赞
知道大有可为答主
回答量:1482
采纳率:20%
帮助的人:1708万
展开全部

希肢森信望对你有所历轮帮助春誉.

王勃啊
2013-01-30 · TA获得超过1.1万个赞
知道大有可为答主
回答量:5015
采纳率:62%
帮助的人:4062万
展开全部
1.请重新核对答案。不会有这样的结论。
只是不穗薯森允许y1-y2=常数罢了。不会y1-y2任何一点都不为0

2.y'/y=-p(x) 两边积分 ∫y'/y=lny
∴∫p(x)=-lny x倾向手知于0时,-lny倾猜亩向于正无穷大
∴选择D。广义积分发散。
追问
请问第二题的A和B选项怎么判断?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-01-30
展开全部
1.设p(x)在R上连续且不恒等于0,y1(x),y2(x)是微分方程y’+p(x)y=0的两个不同的特解,则y1(x)-y2(x)在任何一点不等于0这个结论为什么是正确的?
y'+p(x)y = 0 , so y(x) = ce^(-jifen[p(x)dx]) = c*e^[P(x)],

so y1(x) = c1*e^[P(x)], y2(x) = c2*e^[P(x)], c1!=c2,
so y1(x)-y2(x) = (c1-c2)*e^[P(x)]在任何一点不等于0

2.
设p(x)在[a,正无穷大)上连续非负竖空,如果微分方程y’+p(x)y=0的每一个特解y(x)都满足lim(x→正无穷大)y(x)=0,则p(x)必然坦态满足( )
A.lim(x→正无穷大)p(x)=0
B.lim(x→正无穷大)p(x)=正无穷大
C.p(x)在a到正无穷大上的广义积分收敛
D.p(x)在a到正无穷大上的广义积分发散

y'/y = -p(x), so (lny)' = -p(x), so JIFEN(lny)'dx = JIFEN[-p(x)]dx, x from a to s,
so lny(s) = lny(a) - JIFEN[-p(x)]dx, x from a to s,

y(s) = y(a)/{e^[JIFEN[p(x)]dx]},
let s→正无穷大, {e^[JIFEN[p(x)]dx]}→正无穷大, 故D.p(x)在a到正无穷大上的广义积分让纤源发散
追问
请问,2的AB怎么判断?
追答
2的AB的正确性不知道,只知道 p(x)在a到正无穷大上的广义积分发散, 故没有选 A B, 因为单选题啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-01-30
展开全部
积分一下就可以的哦!
积分一下就出来了哈!
不难的哈!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式