
2个回答
展开全部
S(x) = ∑<n=1,∞>x^(4n+1)/(4n+1)
S'(x) = ∑<n=1,∞> x^(4n) = x^4/(1-x^4) (-1<x<1)
S(x) = ∫<0, x> S'(t) dt + S(0) = ∫<0, x> t^4 dt / (1-t^4)
= ∫<0, x> (t^4-1+1) dt / (1-t^4)
= ∫<0, x> [-1-1/(t^4-1)] dt = ∫<0, x> [-1-1/(t^4-1)] dt
= -x - (1/4) ∫<0, x> [1/(t-1)-1/(t+1)-2/(t^2+1)] dt
= -x +(1/4) ∫<0, x> [1/(1-t)+1/(t+1)+2/(t^2+1)] dt
= -x + (1/4) {ln[(1+x)/(1-x)]+2arctanx} (-1<x<1)
S'(x) = ∑<n=1,∞> x^(4n) = x^4/(1-x^4) (-1<x<1)
S(x) = ∫<0, x> S'(t) dt + S(0) = ∫<0, x> t^4 dt / (1-t^4)
= ∫<0, x> (t^4-1+1) dt / (1-t^4)
= ∫<0, x> [-1-1/(t^4-1)] dt = ∫<0, x> [-1-1/(t^4-1)] dt
= -x - (1/4) ∫<0, x> [1/(t-1)-1/(t+1)-2/(t^2+1)] dt
= -x +(1/4) ∫<0, x> [1/(1-t)+1/(t+1)+2/(t^2+1)] dt
= -x + (1/4) {ln[(1+x)/(1-x)]+2arctanx} (-1<x<1)
追问
= ∫ [-1-1/(t^4-1)] dt = ∫ [-1-1/(t^4-1)] dt
= -x - (1/4) ∫ [1/(t-1)-1/(t+1)-2/(t^2+1)] dt
这边一步是用什么方法化的呀
追答
化成部分分式
1/(t^4-1) = (1/2)[1/(t^2-1)-1/(t^2+1)]
= (1/4)[1/(t-1)-1/(t+1)-2/(t^2+1)]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询