△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是BC延长线
△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是BC延长线上一动点,与点P同时以2cm/s的相同速度由B向CB的延长线方向运动(Q...
△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是BC延长线上一动点,与点P同时以2cm/s的相同速度由B向CB的延长线方向运动(Q不与B重合),过P作PE⊥AB与E,链接PQ交AB与D,设运动时间为t秒
1:用含t的式子表示:Ap= ,AE= ,BE=
2:当<BPQ=30º时,求Ap的长 展开
1:用含t的式子表示:Ap= ,AE= ,BE=
2:当<BPQ=30º时,求Ap的长 展开
1个回答
展开全部
解:(1)∵△ABC是边长为6的等边三角形,
∴∠A=60°,
根据题意得:AP=2tcm,
∵PE⊥AB,
∴AE=AP•cos60°=t(cm),
∴BE=AB-AE=6-t(cm);
故答案为:2tcm,tcm,(6-t)cm;(2)∵∠C=60°,∠BQD=30°,
∴△PCQ是直角三角形,
∴PC=1/2QC,根据题意得:BQ=2tcm,则CQ=BC+BQ=6+2t(cm),PC=AC-AP=6-2t(cm),
∴6-2t=1/2(6+2t),解得:t=1,
∴AP=2;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询