在初中因式分解法中,一共有哪些方法,请用xy表示,顺便写下中文名?

全部哦,感谢%>_<%... 全部哦,感谢 %>_<% 展开
 我来答
xu000123456

2013-01-31 · TA获得超过4.1万个赞
知道大有可为答主
回答量:2.1万
采纳率:87%
帮助的人:5730万
展开全部
方法分类把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。方法一. 提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守。要变号,变形看奇偶。例如:(注:x^2表示x的2次方)-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。注意:把2a^2;+1/2变成2(a^2;+1/4)不叫提公因式方法二. 公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a^2;-b^2;=(a+b)(a-b);完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;); 完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;. 其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca) 例如:a^2; +4ab+4b^2; =(a+2b)^2;。方法三.解方程法例如,将ax^2;+bx+c(a,b,c是常数,ab≠0)因式分解,可令ax^2;+bx+c=0,再解这个方程。如果方程无解,则原式无法因式分解;如果方程有两个相同的实数根(设为m),则原式可以分解为(x-m)^2;;如果方程有两个不相等的实数根(分别设为m,n),则原式可以分解为(x-m)(x-n)。更高次数的多项式亦可。例:分解因式x^2;+3x-4。答:设x^2;+3x-4=0解方程得:x1=1 x2=-4∴x^2;+3x-4因式分解为(x-1)(x+4)分解因式的技巧1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3.提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式。③提完公因式后,另一因式的项数与原多项式的项数相同。竞赛用到的方法
更多追问追答
追问
呃呃呃。。。。。归纳一下。。。眼睛花
追答
公因式法、
公式法
拆项和添减项法,
分组分解法
十字相乘法,
待定系数法,
双十字相乘法,
对称多项式轮换对称多项式法,
余数定理法,
求根公式法,
换元法,
长除法,
除法等。
兀兀倩
2013-01-31
知道答主
回答量:11
采纳率:0%
帮助的人:6.1万
展开全部

  因式分解法不是只有一种吗?

  降次—— 一元二次方程中有 开方法 配方法 公式法 然后才是因式分解法

      例:x²-x-2=0

           

然后就可以解了。

追问
哦,那是我搞错了
追答
不用谢。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式