求解这道数学题第三问~

谢谢mum
2013-02-01 · TA获得超过627个赞
知道小有建树答主
回答量:247
采纳率:66%
帮助的人:278万
展开全部
我来帮你解这道题,如下:

解:(1)∵f(x)是奇函数
∴f(x)= - f(-x) , 即f(x) + f(-x) = 0
∴loga(1-mx)/(x-1) + loga(1+mx)/(-x - 1) = 0
∴[ (mx-1)/(x-1) ] * [ (1+mx)/(x+1) ] = 1 ,即 m^2*x^2 - 1=x^2 - 1,得1 - m^2=0;∴m=-1 或m=1
其中m=1不符合题意,舍去。
当m= - 1时,f(x)的定义域为(1+x)/(x-1) > 0,即 x E (-∞,- 1) U (1,+∞) .
又f(x)= - f(x),∴m= - 1符合题意

(2)∵f(x)=loga(1+x)/(x-1)
f(x)= [ (x-1)/(x+1) ]*[ (1+x)/(x-1) ]*loga e = [ (x-1)/(x+1) ]* { [(x-1)-(x+1)]/(x-1)^2 }*loga e
= [2/(1-x^2) ] * loga e
*若a > 1,则loga e > 0
当x E (1,+∞) 时,1-x^2 < 0, ∴f(x) < 0,f(x)在(1,+∞)上单调递减,即(1,+∞)是f(x)的单调递减区间;从而根据奇函数的性质,(-∞,-1)也是f(x)的单调递减区间 。
**若0 < a < 1,则loga e < 0
当 x E (1,+∞)时,1 - x^2 < 0 ,∴ f(x) > 0,即 x E (1,+∞)是f(x)的单调递增区间;从而(-∞,-1)是f(x)的单调递增区间 。

(3)设 t =(1+x) / (x-1) =1 + 2/(x-1) ,则t为x的减函数
当x E (r,a-2)亦在(1,+∞) ,即当r < a-2时,有a > r + 2 ,且t E (1 + 2/(a-3),+∞) ,要使f(x)的值域为(1,+∞),则必需满足 r=1 且loga (1 + 2/(a-3))= 1, 由此求得a=2+√3 。
追问
为什么r=1?
百度网友6f3e32a
2013-02-01 · TA获得超过5620个赞
知道小有建树答主
回答量:1155
采纳率:0%
帮助的人:1385万
展开全部
解:(1)因为f(x)是奇函数,故f(x)+f(-x)=loga(1-mx)/(x-1)+loga(1+mx)/(-x-1)=loga(1-mx)(1+mx)/(x-1)(-x-1)=0,(1-m²x²)/(1-x²)=1,化简得(m²-1)x²=0定义域内x恒成立,所以m²-1=0,又m≠1,所以m=-1.

  (2)f(x)=loga(x+1)/(x-1)=loga[1+2/(x-1)],因为函数g(x)=1+2/(x-1)在(1,+∞)上单调递减且恒大于1,所以当0<a<1时,f(x)单调递增;当a>1时,f(x)单调递减。

  (3)由定义域(x+1)/(x-1)>0解得x>1或x<-1,对g(x)其相应值域为(0,1)和(1,+∞)。
     ①0<a<1时,由f(x)>1得0<1+2/(x-1)<a,同时x<a-2<1-2=-1,因此x<-1,得到(a+1)/(a-1)<x<-1,因此a-2=-1,a=1,矛盾。
     ②a>1时,由f(x)>1得1+2/(x-1)>a>1,所以x>1,得1<x<(a+1)/(a-1),因此(a+1)/(a-1)=a-2,解得a=2+√3或2-√3(舍去),此时r=1。综上,r=1,a=2+√3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
张乐怡李悦
2013-02-01
知道答主
回答量:51
采纳率:0%
帮助的人:14.1万
展开全部
要答案吗?
追问
答案当然要 不过重要的是帮我详细解析一下第三问!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式