
在三角形ABC中,角ABC的对边分别是abc,且cos(A+B)/2=1-cosC ①求角C大小,
在三角形ABC中,角ABC的对边分别是abc,且cos(A+B)/2=1-cosC①求角C大小,②若1+tanA/tanB=2c/b且c=4,求三角形ABC面积...
在三角形ABC中,角ABC的对边分别是abc,且cos(A+B)/2=1-cosC ①求角C大小,②若1+tanA/tanB=2c/b且c=4,求三角形ABC面积
展开
1个回答
展开全部
解:(1)cos(A+B)=2cos²((A+B)/2)-1=2(1-cosC)²-1=1+2cos²C-4cosC,∵
A+B=π-C,
=> cos(A+B)=c0s(π-C)=-cosC=1+2cos²C-4cosC,
=> 2cos²C-4cosC+1=-cosC
=> 2cos²C-3osC+1=0,
=> cosC=1/2或1
cosC=1舍去,cosC=1/2
=> C=π/3, A+B=2π/3;
(2)作CD垂直AB于点D,设AD=x,则
1+tanA/tanB=1+(CD/x)/[CD/(c-x)]=1+(c-x)/x=c/x=2c/b,
=> x=b/2,
CD垂直于AB,
=> A=π/3,
A+B=2π/3,
=> B=π/3,
三角形是等边三角形,
三角形面积SΔABC=1/2bcsinA=4*4*sin(π/3)/2=4√3.
祝学习进步!
A+B=π-C,
=> cos(A+B)=c0s(π-C)=-cosC=1+2cos²C-4cosC,
=> 2cos²C-4cosC+1=-cosC
=> 2cos²C-3osC+1=0,
=> cosC=1/2或1
cosC=1舍去,cosC=1/2
=> C=π/3, A+B=2π/3;
(2)作CD垂直AB于点D,设AD=x,则
1+tanA/tanB=1+(CD/x)/[CD/(c-x)]=1+(c-x)/x=c/x=2c/b,
=> x=b/2,
CD垂直于AB,
=> A=π/3,
A+B=2π/3,
=> B=π/3,
三角形是等边三角形,
三角形面积SΔABC=1/2bcsinA=4*4*sin(π/3)/2=4√3.
祝学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询