已知抛物线y=x2,直线l过抛物线的焦点且与抛物线分别交于A(x1,y1),B(x2,y2)两点 (1)求证:x1x2=-4分之1
展开全部
解:
(1)
抛物线焦点(0,1/4)
所以设直线为y-1/4=kx
y=kx+1/4
带入抛物线
kx+1/4=x^2
x^2-kx-1/4=0
根据韦达定理
x1x2=-1/4/1=-1/4
(2)
AP=(x0-x1,y0-y1)
BP=(x0-x2,y0-y2)
AP垂直于BP
(x0-x1)(x0-x2)+(y0-y1)(y0-y2)=0
x0^2-(x1+x2)x0+x1x2+y0^2-(y1+y2)y0+y1y2=0
x0^2-kx0-1/4+y0^2-(k^2+1/2)y0+1/16=0
x0^2+y0^2=kx0+1/4+(k^2+1/2)x0^2-1/16>0
kx0+1/4+(k^2+1/2)x0^2-1/16>=0
△=k^2/4-3/8=<0
2k^2<=3
k^2<=3/2
-根号6/2<=k<=根号6/2
(1)
抛物线焦点(0,1/4)
所以设直线为y-1/4=kx
y=kx+1/4
带入抛物线
kx+1/4=x^2
x^2-kx-1/4=0
根据韦达定理
x1x2=-1/4/1=-1/4
(2)
AP=(x0-x1,y0-y1)
BP=(x0-x2,y0-y2)
AP垂直于BP
(x0-x1)(x0-x2)+(y0-y1)(y0-y2)=0
x0^2-(x1+x2)x0+x1x2+y0^2-(y1+y2)y0+y1y2=0
x0^2-kx0-1/4+y0^2-(k^2+1/2)y0+1/16=0
x0^2+y0^2=kx0+1/4+(k^2+1/2)x0^2-1/16>0
kx0+1/4+(k^2+1/2)x0^2-1/16>=0
△=k^2/4-3/8=<0
2k^2<=3
k^2<=3/2
-根号6/2<=k<=根号6/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询