
已知函数f(x)=2acos^2x+bsinxcosx,f(0)=2,f(π/3)=1/2+(根号3)/2
2个回答
展开全部
f(0)=2,f(π/3)=1/2+(根号3)/2
即:2a=2,
a/2+(√3)b/4=1/2+√3/2
解得:a=1,b=2
所以,f(x)=2cos²x+2sinxcosx
=cos2x+1+sin2x
=√2sin(2x+π/4)+1
f(a)=√2sin(2a+π/4)+1=0
得:sin(2a+π/4)=-√2/2
因为a属于(0,2π),则可得:a1=3π/4,a2=7π/4,a3=π/2,a4=3π/2
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
即:2a=2,
a/2+(√3)b/4=1/2+√3/2
解得:a=1,b=2
所以,f(x)=2cos²x+2sinxcosx
=cos2x+1+sin2x
=√2sin(2x+π/4)+1
f(a)=√2sin(2a+π/4)+1=0
得:sin(2a+π/4)=-√2/2
因为a属于(0,2π),则可得:a1=3π/4,a2=7π/4,a3=π/2,a4=3π/2
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
展开全部
f(x)=2acos^2x+bsinxcosx
=a(1+cos2x)+1/2bsin2x
=1/2bsin2x+acos2x+a
f(0)=1/2bsin0+acos0+a=2, 得 a=1,
f(π/3)=1/2bsin2π/3+acos2π/3+a=1/2+√3/2
√3/4b-1/2*a+a=1/2+√3/2,得 b=2
f(x)=sin2x+os2x+1=√2sin(2x+π/4)+1
f(a)=√2sin(2a+π/4)+1=0
sin(2a+π/4)= -√2/2
a属于(0,2π),
2a+π/4=5π/4, 或 2a+π/4=7π/4
a=π/2 或 a=3π/4
=a(1+cos2x)+1/2bsin2x
=1/2bsin2x+acos2x+a
f(0)=1/2bsin0+acos0+a=2, 得 a=1,
f(π/3)=1/2bsin2π/3+acos2π/3+a=1/2+√3/2
√3/4b-1/2*a+a=1/2+√3/2,得 b=2
f(x)=sin2x+os2x+1=√2sin(2x+π/4)+1
f(a)=√2sin(2a+π/4)+1=0
sin(2a+π/4)= -√2/2
a属于(0,2π),
2a+π/4=5π/4, 或 2a+π/4=7π/4
a=π/2 或 a=3π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询