古典概型中的摸球问题 为什么放回与不放回概率不同
题目:一个口袋中有编号为1.2的两个白球和编号为1.2.3的三个黑球。求(1)摸出两个球,两球颜色恰好不同的概率(2)摸出一个球放回后在摸出一个,求两球颜色不同的概率。解...
题目:一个口袋中有编号为1.2的两个白球和编号为1.2.3的三个黑球。求(1)摸出两个球,两球颜色恰好不同的概率 (2)摸出一个球放回后在摸出一个,求两球颜色不同的概率。
解:
(1)card(omega)=C25=10 card(事件a)=c12*c13=6 p(a)=3/5
(2)card(omega)=c15*c15=25 card(事件b)=c12*c13+c12*c13=12 p=12/25
疑惑:
为什么解(2)中的card事件b中,先取黑后取白和先取白后取黑是两个事件,需要算两次,解(1)中就不需呢?照例说用c来算而不用a应该就忽略了顺序问题了,我算完得数为6/25,正好为标答的一半,就差在这个位置。
如果问(2)换一种解法:第一次若去白球1的概率为1/5,取黑球的概率为3/5,最终p为3/25;若取白球2的概率为1/5,取黑球概率依旧为3/5,最终p为3/25;两个p相加得6/25。这种解法错在哪里呢? 展开
解:
(1)card(omega)=C25=10 card(事件a)=c12*c13=6 p(a)=3/5
(2)card(omega)=c15*c15=25 card(事件b)=c12*c13+c12*c13=12 p=12/25
疑惑:
为什么解(2)中的card事件b中,先取黑后取白和先取白后取黑是两个事件,需要算两次,解(1)中就不需呢?照例说用c来算而不用a应该就忽略了顺序问题了,我算完得数为6/25,正好为标答的一半,就差在这个位置。
如果问(2)换一种解法:第一次若去白球1的概率为1/5,取黑球的概率为3/5,最终p为3/25;若取白球2的概率为1/5,取黑球概率依旧为3/5,最终p为3/25;两个p相加得6/25。这种解法错在哪里呢? 展开
1个回答
展开全部
简单点说……
第一问的时候,前面取球的总可能,是C25=10这里面没有考虑顺序问题,也就是先白后黑和先黑后白是一种情况,那么后面那个也就不要考虑顺序问题,是C21*C31=6了,结果就是3/5。
第二问的时候,前面取球的总可能数量里面,加了顺序,因为C15*C15=25里面包括了先白后黑,先黑后白两种情况,于是在算后面事件b的时候,就要算两种可能的都算上。
另外就是
第一问的时候取两个球,这取法其实是两次取球的概率是有关联的,也就是第一次取白还是黑影响了第二次,如果想第二问那么算总可能的话会很麻烦。
而第二问两次取球其实是相互独立的,也就是没有关系,第一次取出来是白球还是黑球毫不影响第二次取出来的是白还是黑,于是总可能就是C15*C15这样算,如果还是按照第一问算的话会很麻烦……
第一问的时候,前面取球的总可能,是C25=10这里面没有考虑顺序问题,也就是先白后黑和先黑后白是一种情况,那么后面那个也就不要考虑顺序问题,是C21*C31=6了,结果就是3/5。
第二问的时候,前面取球的总可能数量里面,加了顺序,因为C15*C15=25里面包括了先白后黑,先黑后白两种情况,于是在算后面事件b的时候,就要算两种可能的都算上。
另外就是
第一问的时候取两个球,这取法其实是两次取球的概率是有关联的,也就是第一次取白还是黑影响了第二次,如果想第二问那么算总可能的话会很麻烦。
而第二问两次取球其实是相互独立的,也就是没有关系,第一次取出来是白球还是黑球毫不影响第二次取出来的是白还是黑,于是总可能就是C15*C15这样算,如果还是按照第一问算的话会很麻烦……
瑞地测控
2024-08-12 广告
2024-08-12 广告
紧缩场反射面是苏州瑞地测控技术有限公司专业设计的高精度测试设备关键组件,它采用先进曲面设计与优质材料,旨在模拟远场测试环境,有效压缩测试距离,提升测试效率与精度。该反射面能精确控制电磁波的反射路径,减少干扰,确保测试数据准确可靠,广泛应用于...
点击进入详情页
本回答由瑞地测控提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询