
已知α,β∈(0,π/2),(tanα/2)/(1-tan²α/2)=根号三/2,
已知α,β∈(0,π/2),(tanα/2)/(1-tan²α/2)=根号三/2,且2sinβ=sin(α+β),则β的值为?...
已知α,β∈(0,π/2),(tanα/2)/(1-tan²α/2)=根号三/2,且2sinβ=sin(α+β),则β的值为?
展开
展开全部
令t = tan(α/2): t/(1 - t²) = √3/2
√3t² + 2t - √3 = 0
t = (-2 ± 4)/(2√3)
α ∈ (0,π/2), α/2 ∈ (0,π/4), t = tan(α/2) > 0
t = (-2 + 4)/(2√3) = √3/3
α/2 = π/6, α = π/3
2sinβ=sin(α+β) = sin(π/3 + β) = sin(π/3)cosβ + cos(π/3)sinβ = (√3/2)cosβ + (1/2)sinβ
(3/2)sinβ = (√3/2)cosβ
tanβ = sinβ/cosβ = √3/3
β = π/6
√3t² + 2t - √3 = 0
t = (-2 ± 4)/(2√3)
α ∈ (0,π/2), α/2 ∈ (0,π/4), t = tan(α/2) > 0
t = (-2 + 4)/(2√3) = √3/3
α/2 = π/6, α = π/3
2sinβ=sin(α+β) = sin(π/3 + β) = sin(π/3)cosβ + cos(π/3)sinβ = (√3/2)cosβ + (1/2)sinβ
(3/2)sinβ = (√3/2)cosβ
tanβ = sinβ/cosβ = √3/3
β = π/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询