如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(

如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重... 如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由. 展开
空灵百
推荐于2017-12-15 · TA获得超过7172个赞
知道答主
回答量:24
采纳率:0%
帮助的人:16.3万
展开全部
解:(1)∵△ABC是边长为6的等边三角形
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QCP=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+C=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=½QC,即6﹣x=½(6+x),解得x=2;
(2)当点P、Q运动时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q做匀速运动且速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,
∴在△APE和△BQF中,
∵∠A=∠FBQ∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
∴∠A=∠FBQ
AP=BQ
∠AEP=∠BFQ
∴△APE≌△BQF,
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=½EF,
∵EB+AE=BE+BF=AB,
∴DE=½AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴当点P、Q运动时,线段DE的长度不会改变.

分析: (1))由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QCP=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=½QC,即6﹣x=½(6+x),求出x的值即可;
(2)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,
再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=½AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.
点评: 本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.
820204286
2013-04-09 · TA获得超过467个赞
知道答主
回答量:80
采纳率:0%
帮助的人:17万
展开全部
解:(1)∵△ABC是边长为6的等边三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QCP=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+C=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=½QC,即6﹣x=½(6+x),解得x=2;
(2)当点P、Q运动时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q做匀速运动且速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,
∴在△APE和△BQF中,
∵∠A=∠FBQ∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
∴∠A=∠FBQ
AP=BQ
∠AEP=∠BFQ
∴△APE≌△BQF,
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=½EF,
∵EB+AE=BE+BF=AB,
∴DE=½AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴当点P、Q运动时,线段DE的长度不会改变.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-04-12
展开全部
(1)首先,AP=BQ,当∠BQD=30°时,△PQC是直角三角形,设AP=BQ=x,那么,QC=2PC,即6+x=2(6-x),解方程x=2,即AP=2。
(2)DE长度不变,为3。设AP=x,则AE=0.5x,BD=6-DE-0.5x,过D做DF平行AC交BC于F,则△QDF相似于△QPC,其中△BDF为正三角形。三角形相似,对应边成比例,可得QC/CF=PC/DF,即(6+x)/(6-6+DE+0.5x)=(6-x)/(6-DE-0.5x),化简可消去x,得到DE=3。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孙家振159
2014-11-11 · TA获得超过282个赞
知道答主
回答量:143
采纳率:0%
帮助的人:23.9万
展开全部
解:(1)∵△ABC是边长为6的等边三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QCP=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+C=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=½QC,即6﹣x=½(6+x),解得x=2;
(2)当点P、Q运动时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q做匀速运动且速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,
∴在△APE和△BQF中,
∵∠A=∠FBQ∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
∴∠A=∠FBQ
AP=BQ
∠AEP=∠BFQ
∴△APE≌△BQF,
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=½EF,
∵EB+AE=BE+BF=AB,
∴DE=½AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴当点P、Q运动时,线段DE的长度不会改变.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
151*****989
2014-11-09
知道答主
回答量:12
采纳率:0%
帮助的人:1.5万
展开全部
解:(1)∵△ABC是边长为6的等边三角形, ∴∠ACB=60°, ∵∠BQD=30°, ∴∠QCP=90°, 设AP=x,则PC=6﹣x,QB=x, ∴QC=QB+C=6+x, ∵在Rt△QCP中,∠BQD=30°, ∴PC=½QC,即6﹣x=½(6+x),解得x=2;(2)当点P、Q运动时,线段DE的长度不会改变.理由如下: 作QF⊥AB,交直线AB的延长线于点F,连接QE,PF, 又∵PE⊥AB于E, ∴∠DFQ=∠AEP=90°, ∵点P、Q做匀速运动且速度相同, ∴AP=BQ, ∵△ABC是等边三角形, ∴∠A=∠ABC=∠FBQ=60°, ∴在△APE和△BQF中, ∵∠A=∠FBQ∠AEP=∠BFQ=90°, ∴∠APE=∠BQF,∴∠A=∠FBQAP=BQ∠AEP=∠BFQ∴△APE≌△BQF, ∴AE=BF,PE=QF且PE∥QF, ∴四边形PEQF是平行四边形, ∴DE=½EF, ∵EB+AE=BE+BF=AB, ∴DE=½AB, 又∵等边△ABC的边长为6, ∴DE=3, ∴当点P、Q运动时,线段DE的长度不会改变. 
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式