已知全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2},
(1)求A∩B、(CUA)∪(CUB);(2)若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求实数k的取值范围....
(1)求A∩B、(CUA)∪(CUB);
(2)若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求实数k的取值范围. 展开
(2)若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求实数k的取值范围. 展开
3个回答
展开全部
解1:由-3≤x-1≤2 得 -2≤x≤3
故A∩B={x|x<-4,或x>1}∩{x|-2≤x≤3}={x|1<x≤3}
(CUA)∪(CUB)={x|-4≤x≤1}∪{x|x<-2或x>3}={x|-4≤x<-2}
解2:由于集合M={x|2k-1≤x≤2k+1}是集合A的粗段子集
故有 2k+1<-4 或2k-1>1
解得 k<-5/岩岩誉2 或 k>1 即为枣高所求
故A∩B={x|x<-4,或x>1}∩{x|-2≤x≤3}={x|1<x≤3}
(CUA)∪(CUB)={x|-4≤x≤1}∪{x|x<-2或x>3}={x|-4≤x<-2}
解2:由于集合M={x|2k-1≤x≤2k+1}是集合A的粗段子集
故有 2k+1<-4 或2k-1>1
解得 k<-5/岩岩誉2 或 k>1 即为枣高所求
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)①B=[-2,3]
A∩B=(1,3]
②CuA=[-4,1] CuB=(负无穷,-2)∪(3,正无穷)
所以(CUA)∪(CUB)=[-4,-2)
(2)①M属于(带尘负无穷,-4)
2k+1<-4 k<-5/2
②M属蠢历禅于(1,正无烂没穷)
2k-1>1 k>1
综上所述, k<-5/2 或 k>1
A∩B=(1,3]
②CuA=[-4,1] CuB=(负无穷,-2)∪(3,正无穷)
所以(CUA)∪(CUB)=[-4,-2)
(2)①M属于(带尘负无穷,-4)
2k+1<-4 k<-5/2
②M属蠢历禅于(1,正无烂没穷)
2k-1>1 k>1
综上所述, k<-5/2 或 k>1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询