关于三角形的数学问题。
如图9,在三角形ABC中,角ACB为直角,AC=BC,D为三角形ABC外的一点,且AD=BD,DE垂直AC交CA的延长线于点E,试探究ED,AE和BC之间有何数量关系?(...
如图9,在三角形ABC中,角ACB为直角,AC=BC,D为三角形ABC外的一点,且AD=BD,DE垂直AC交CA的延长线于点E,试探究ED,AE和BC之间有何数量关系?(将过程写下来)谢谢。图有些乱,抱歉。
展开
6个回答
展开全部
解:过B做BM⊥ED于M
因为∠ACB为直角,AC=BC
所以∠CAB=∠CBA=45度
所以∠EAB=∠EAD+∠DAB=135度
因为∠ACB为直角,DE⊥AC
所以BC‖DE
所以∠EDB+∠ABD=180-∠CBA=135度
因为AD=BD
所以∠DAB=∠DBA
所以∠EAD=∠BDM
又因为∠E=∠BMD=90度
AD=BD
所以△AED≌△BDM
所以DE=BM=CE=CA+AE=CB+AE
希望你采纳!!!
因为∠ACB为直角,AC=BC
所以∠CAB=∠CBA=45度
所以∠EAB=∠EAD+∠DAB=135度
因为∠ACB为直角,DE⊥AC
所以BC‖DE
所以∠EDB+∠ABD=180-∠CBA=135度
因为AD=BD
所以∠DAB=∠DBA
所以∠EAD=∠BDM
又因为∠E=∠BMD=90度
AD=BD
所以△AED≌△BDM
所以DE=BM=CE=CA+AE=CB+AE
希望你采纳!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
ED=AE+BC
因为AC=BC AD=BD 所以CD连接起来垂直于AB
因为三角形ACB是等腰直角三角形 所以∠ACD=45°
因为DE⊥CE 所以△ECD也是等腰直角三角形 ∴CE=ED
而CE=AE+AC AC=CB ∴ED=CE=AE+AC=AE+BC
因为AC=BC AD=BD 所以CD连接起来垂直于AB
因为三角形ACB是等腰直角三角形 所以∠ACD=45°
因为DE⊥CE 所以△ECD也是等腰直角三角形 ∴CE=ED
而CE=AE+AC AC=CB ∴ED=CE=AE+AC=AE+BC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接CD
因为AC=BC,AB=BD
所以CD平分∠ACB
所以∠ACD=45°
因为DE⊥AC
所以∠EDC=45°
所以ED=EC=EA+AC
因为AC=BC
所以ED=AE+BC
因为AC=BC,AB=BD
所以CD平分∠ACB
所以∠ACD=45°
因为DE⊥AC
所以∠EDC=45°
所以ED=EC=EA+AC
因为AC=BC
所以ED=AE+BC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵AC=BC,AD=BD,∴AB⊥CD交于F点∴∠ACF=90°又∵CE⊥ED∴CE=ED,又∵CB=AC,AE=ED∴AC CE=ED即CB CE=ED
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接CD
∵AC=BC,AD=BD,CD=CD
∴△ACD≌△ABD
∠ACD=∠BCD
∴∠ACD=45°
∵DE⊥AC
∴∠CED=90°
∴ED=CE=AE+AC=AE+BC
∵AC=BC,AD=BD,CD=CD
∴△ACD≌△ABD
∠ACD=∠BCD
∴∠ACD=45°
∵DE⊥AC
∴∠CED=90°
∴ED=CE=AE+AC=AE+BC
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询