设整数a、b(a≠b)使方程x²+ax+b=0与x²+bx+a=0有一个公共根,证明:这两个方程的根都是整数
2个回答
展开全部
在此处:http://zhidao.baidu.com/question/231694310.html
一 .先补充以下知识:
二次方程是一种整式方程,其未知项的最高次数是2。
如果一个二次方程只含有一个未知数(x),那么就称其为一元二次方程。
如果一个二次方程含有二个未知数(x和y),那么就称其为二元二次方程,以此类推。
二次方程中最常见的是一元二次方程。它的基本表达式为:ax^2+bx+c=0(a≠0)。其中a为方程的二次项系数,b为一次项系数,c为常数。若a = 0,则该方程没有二次项,即变为一次方程。
一元二次方程的根
(1)若b^2-4ac<0,有两个复数根:x1=[-b+i√(4ac-b^2)]/(2a) , x2=[-b-i√(4ac-b^2)]/(2a);
(2)若b^2-4ac=0,有两个相等实根: x1=x2=-b/(2a);
(3)若b^2-4ac>0,有两个不等实根: x1=[-b+√(b^2-4ac)]/(2a) ,x2=[-b-√(b^2-4ac)]/(2a) 。
其中b^2-4ac称为根的判别式,常记为△。
推导过程:
移项,化二次项系数为1,得
x^2+b/ax=-c/a
两边同时加(b/(2a))^2,得
(x+b/(2a))^2=(b^2-4ac)/(4a^2)
x=[-b±√(b^2-4ac)]/(2a)
还可以令x=y-b/(2a),代入后消去一次项,得y^2=(b^2-4ac)/(4a^2),再减去b/(2a)。
二. 取公共根,两等式做差,得
(a-b)x+b-a=0 → 公共根x=1,带入任一方程,得
a+b=-1
一 .先补充以下知识:
二次方程是一种整式方程,其未知项的最高次数是2。
如果一个二次方程只含有一个未知数(x),那么就称其为一元二次方程。
如果一个二次方程含有二个未知数(x和y),那么就称其为二元二次方程,以此类推。
二次方程中最常见的是一元二次方程。它的基本表达式为:ax^2+bx+c=0(a≠0)。其中a为方程的二次项系数,b为一次项系数,c为常数。若a = 0,则该方程没有二次项,即变为一次方程。
一元二次方程的根
(1)若b^2-4ac<0,有两个复数根:x1=[-b+i√(4ac-b^2)]/(2a) , x2=[-b-i√(4ac-b^2)]/(2a);
(2)若b^2-4ac=0,有两个相等实根: x1=x2=-b/(2a);
(3)若b^2-4ac>0,有两个不等实根: x1=[-b+√(b^2-4ac)]/(2a) ,x2=[-b-√(b^2-4ac)]/(2a) 。
其中b^2-4ac称为根的判别式,常记为△。
推导过程:
移项,化二次项系数为1,得
x^2+b/ax=-c/a
两边同时加(b/(2a))^2,得
(x+b/(2a))^2=(b^2-4ac)/(4a^2)
x=[-b±√(b^2-4ac)]/(2a)
还可以令x=y-b/(2a),代入后消去一次项,得y^2=(b^2-4ac)/(4a^2),再减去b/(2a)。
二. 取公共根,两等式做差,得
(a-b)x+b-a=0 → 公共根x=1,带入任一方程,得
a+b=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询