已知函数f(x)=3x^2-2x,数列{an}的前n项和为Sn,点(n.Sn)在函数f(x)的图像上,数列{bn}满足

bn=3/anan+1,数列{bn}的前n项和为Tn,对于任意的n属于正整数,Tn<m/20恒成立,求m的取值范围... bn=3/anan+1,数列{bn}的前n项和为Tn,对于任意的n属于正整数,Tn<m/20恒成立,求m的取值范围 展开
老伍7192
2013-02-04 · TA获得超过9874个赞
知道大有可为答主
回答量:3195
采纳率:83%
帮助的人:1220万
展开全部
解:点(n.Sn)在函数f(x)=3x^2-2x的图像上
Sn=3n^2-2n
S(n-1)=3(n-1)^2-2(n-1)
an=sn-s(n-1)=3(2n-1)-2=6n-5
设bn=3/(ana(n+1))
bn=3/(6n-5)(6n+1)=(1/2)[(1/(6n-5)-1/(6n+1)]
Tn=(1-1/7)/2+(1/7-1/13)/2+...+(1/(6n-5)-1/(6n+1)/2=(1-1/(6n+1)/2=3n/(6n+1)
3n/(6n+1)=(1-1/(6n+1)/2<1/2
Tn=<1/2
由Tn<m/20知
只要m/20>=1/2即可
m>=10
最小正整数是10
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式