3个回答
展开全部
I = ∫<-1, 1> [√(4-x^2) - √(x^2+2)] dx
= 2 [∫<0, 1> √(4-x^2) dx - ∫<0, 1> √(x^2+2)dx]
= 2(I1 - I2)
令 x = 2sinu, 则
I1 = ∫<0, π/6> 4(cosu)^2 du = 2 ∫<0, π/6> (1+cos2u)du
= [2u+sin2u]<0, π/6> = π/3 + √3/2
令 x = √2tanv, 则
I2 = 2 ∫<0, arctan(1/√2)> secvdtanv,
I3 = ∫<0, arctan(1/√2)> secvdtanv
= [secvtanv]<0, arctan(1/√2)> - ∫<0, arctan(1/√2)> secv(tanv)^2dv
= √3/2 - ∫<0, arctan(1/√2)> secv[(secv)^2-1]dv
= √3/2 - I3 + ∫<0, arctan(1/√2)> secvdv
2I3 = √3/2 + [ln(secv+tanv)]<0, arctan(1/√2)>
= √3/2 + ln[(1+√3)/√2]
I3 = √3/4 + (1/2)ln[(1+√3)/√2]
I2 = 2I3 = √3/2 + ln[(1+√3)/√2]
I = 2(I1 - I2) = 2π/3 - 2ln[(1+√3)/√2]
= 2 [∫<0, 1> √(4-x^2) dx - ∫<0, 1> √(x^2+2)dx]
= 2(I1 - I2)
令 x = 2sinu, 则
I1 = ∫<0, π/6> 4(cosu)^2 du = 2 ∫<0, π/6> (1+cos2u)du
= [2u+sin2u]<0, π/6> = π/3 + √3/2
令 x = √2tanv, 则
I2 = 2 ∫<0, arctan(1/√2)> secvdtanv,
I3 = ∫<0, arctan(1/√2)> secvdtanv
= [secvtanv]<0, arctan(1/√2)> - ∫<0, arctan(1/√2)> secv(tanv)^2dv
= √3/2 - ∫<0, arctan(1/√2)> secv[(secv)^2-1]dv
= √3/2 - I3 + ∫<0, arctan(1/√2)> secvdv
2I3 = √3/2 + [ln(secv+tanv)]<0, arctan(1/√2)>
= √3/2 + ln[(1+√3)/√2]
I3 = √3/4 + (1/2)ln[(1+√3)/√2]
I2 = 2I3 = √3/2 + ln[(1+√3)/√2]
I = 2(I1 - I2) = 2π/3 - 2ln[(1+√3)/√2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询