
求导y=arctan√(x^2-1)-(lnx/√(x^2-1)) 求详细解答过程
2个回答
展开全部
(arctanx)' = 1/(x² + 1)
(lnx)' = 1/x
(u/v)' = (u'v - uv')/v²
y' = [arctan√(x² - 1)]' - [lnx/√(x² - 1)]'
= [1/(x² - 1 + 1)][√(x² - 1)]' - {(1/x)√(x² - 1) - (lnx)[√(x² - 1)]'}/(x² - 1)
= (1/2)*2x/[x²√(x² - 1)] - {[√(x² - 1)/x] - (lnx)(1/2)(2x)/√(x² - 1)}/(x² - 1)
= 1/[x√(x² - 1)] - [√(x² - 1)/x]- (xlnx)/√(x² - 1)]/(x² - 1)
= 1/[x√(x² - 1)] - 1/[x√(x² - 1)] + xlnx/[(x² - 1)√(x² - 1)]
= xlnx/[(x² - 1)√(x² - 1)]
(lnx)' = 1/x
(u/v)' = (u'v - uv')/v²
y' = [arctan√(x² - 1)]' - [lnx/√(x² - 1)]'
= [1/(x² - 1 + 1)][√(x² - 1)]' - {(1/x)√(x² - 1) - (lnx)[√(x² - 1)]'}/(x² - 1)
= (1/2)*2x/[x²√(x² - 1)] - {[√(x² - 1)/x] - (lnx)(1/2)(2x)/√(x² - 1)}/(x² - 1)
= 1/[x√(x² - 1)] - [√(x² - 1)/x]- (xlnx)/√(x² - 1)]/(x² - 1)
= 1/[x√(x² - 1)] - 1/[x√(x² - 1)] + xlnx/[(x² - 1)√(x² - 1)]
= xlnx/[(x² - 1)√(x² - 1)]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询