求导y=arctan√(x^2-1)-(lnx/√(x^2-1)) 求详细解答过程

782962260
2013-02-05 · TA获得超过4886个赞
知道大有可为答主
回答量:2033
采纳率:0%
帮助的人:1015万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
唐卫公
2013-02-05 · TA获得超过3.7万个赞
知道大有可为答主
回答量:9440
采纳率:76%
帮助的人:5498万
展开全部
(arctanx)' = 1/(x² + 1)
(lnx)' = 1/x
(u/v)' = (u'v - uv')/v²
y' = [arctan√(x² - 1)]' - [lnx/√(x² - 1)]'
= [1/(x² - 1 + 1)][√(x² - 1)]' - {(1/x)√(x² - 1) - (lnx)[√(x² - 1)]'}/(x² - 1)
= (1/2)*2x/[x²√(x² - 1)] - {[√(x² - 1)/x] - (lnx)(1/2)(2x)/√(x² - 1)}/(x² - 1)
= 1/[x√(x² - 1)] - [√(x² - 1)/x]- (xlnx)/√(x² - 1)]/(x² - 1)
= 1/[x√(x² - 1)] - 1/[x√(x² - 1)] + xlnx/[(x² - 1)√(x² - 1)]
= xlnx/[(x² - 1)√(x² - 1)]
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式