已知函数,f(x)=-2/2^(x-a) +1,若f(x)≥-2^x在x≥a上恒成立,则实数a的取值范围是—— 5 答案是a≥0求过程... 答案是a≥0 求过程 展开 我来答 可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。 函数 f(x) x-a 实数 搜索资料 1个回答 #热议# 上班途中天气原因受伤算工伤吗? seanwillian 2013-02-05 · TA获得超过232个赞 知道小有建树答主 回答量:198 采纳率:100% 帮助的人:158万 我也去答题访问个人页 关注 展开全部 恒成立,也即:-2/2^(x-a) +1+2^x≥0, 2^x>0恒成立,代换不等式为(2^x)^2+(2^x)-2^(a+1)≥0,不等式左侧最小值为x=a时取得,即(2^a)^2+(2^a)-2^(a+1)≥0, 求解就是a≥0 追问 代换不等式为(2^x)^2+(2^x)-2^(a+1)≥0怎么化? 追答 2^x>0恒成立,将不等式两侧同时乘以2^x。 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: