已知a+2b+3C=12且a的平方+b的平方+c的平方=ab+ac+bc求a+b的平方+c的立方?
2个回答
展开全部
a²+b²+c²=ab+bc+ca
a²+b²+c²-ab-bc-ac=0
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
代入a+2b+3c=12
a+2a+3a=12
a=2
b=c=2
所以a+b²+c³=2+4+8=14
a²+b²+c²-ab-bc-ac=0
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
代入a+2b+3c=12
a+2a+3a=12
a=2
b=c=2
所以a+b²+c³=2+4+8=14
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询