求证n!<[(n+1)/2]^n,用两种方法

 我来答
我不是他舅
推荐于2016-12-01 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:36亿
展开全部
证法一
由代数平均大于几何平均
(1+2+3+……+n)/n>(1*2*3*……*n)的n次方根
所以n(n+1)/2n>(n!)的n次方根
所以n!<[(n+1)/2]^n

证法二
因为0<1*n<[(1+n)/2]^2
0<2*(n-1)<[(1+n)/2]^2
……
0<(n-1)*2<[(1+n)/2]^2
0<n*1<[(1+n)/2]^2
相乘
1^2*2^2*……*n^2<[(1+n)/2]^2n
(n!)^n<[(1+n)/2]^2n
所以n!<[(n+1)/2]^n
华瑞RAE一级代理商
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工... 点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式