如图,△ABC为等边三角形,D为BC上任一点,∠ADE=60°,边DE与∠ACB外角的平分线相交于点E
(1)求证:△ADE为等边三角形(2)若点D在CB的延长线上,(1)的结论是否成立?请画出图形(不要用圆本人初二上学期...谢谢)...
(1)求证:△ADE为等边三角形(2)若点D在CB的延长线上,(1)的结论是否成立?请画出图形(不要用圆 本人初二上学期...谢谢)
展开
1个回答
展开全部
分析过程:AC与DE交叉设为F
已知角ADE=角ACE=60度,角AFD角EFC为对顶角,所以角DAE=角DEC(设为角1)
角AFD=180-60-角1(在三角形ADF中)
角AFE=180-60-角1(三角形EFC外角)
所以角AFD=角AFE=90度,也就是AC垂直DE.
角1=30度,角EDC=30度,根据等腰三角形DC=CE
AC公共边,所以三角形ADC全等于AEC,所以AD=AE
确认三角形ADE为等腰,角ADE60度,所以三角形ADE为等边三角形。
若在BC或CB的延长线上,结论一致。
证明同上思路。
已知角ADE=角ACE=60度,角AFD角EFC为对顶角,所以角DAE=角DEC(设为角1)
角AFD=180-60-角1(在三角形ADF中)
角AFE=180-60-角1(三角形EFC外角)
所以角AFD=角AFE=90度,也就是AC垂直DE.
角1=30度,角EDC=30度,根据等腰三角形DC=CE
AC公共边,所以三角形ADC全等于AEC,所以AD=AE
确认三角形ADE为等腰,角ADE60度,所以三角形ADE为等边三角形。
若在BC或CB的延长线上,结论一致。
证明同上思路。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询