将e^2z/(1-2z)在z=0展开形成幂级数

 我来答
委婉且灵活丶才子25
2016-11-24 · TA获得超过707个赞
知道小有建树答主
回答量:866
采纳率:0%
帮助的人:173万
展开全部
将e^{2z}展开成泰勒级数得e^{2z}=1+2z/1!+(2z)^2/2!+...+(2z)^n/n!+...
故1-e^{2z}=-[2z/1!+(2z)^2/2!+...+(2z)^n/n!+...]
故[1-e^{2z}]/z^4=-[2z^{-3}/1!+2^2z^{-2}/2!+...+2^nz^{n-4}/n!+...]
故z=0为三级极点, 留数可从级数的系数得到
最熟悉的home
2019-06-27 · 贡献了超过252个回答
知道答主
回答量:252
采纳率:0%
帮助的人:16.1万
展开全部
幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为幂级数,是数学分析当中重要概念之一,是指在级数的每幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以幂级数,是数学分析当中重要概念之一,是指在级幂级数,是数学分析当中重要概念之一,是指在幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。级幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来自武当山见义勇为&#x00A0;的西洋菜
2019-06-27 · TA获得超过123个赞
知道答主
回答量:1557
采纳率:9%
帮助的人:117万
展开全部
幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2019-06-27 · TA获得超过5323个赞
知道大有可为答主
回答量:4533
采纳率:90%
帮助的人:333万
展开全部

幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。

是定义在某区间I上的函数列,则表达式

(1)

称为定义在区间I上函数项级数。

如果式(1)上的各项

都是定义在区间

上的幂函数,函数项级数

(2)

称作幂级数,其中

为常数,

称为幂级数的系数。

特别的,当

=0时,幂级数式(2)变为

(3)

对于定义在区间I上的函数项级数

,取定

,就变成数项级数

(4)

数项级数式(4)可能收敛,也可能发散。如果数项级数式(4)是收敛的,称

为函数项级数(1)的收敛点;如果数项级数式(4)是发散的,称

为函数项级数(1)的发散点。函数项级数式(1)的所有收敛点的集合称为其收敛域,所有发散点的集合称为其发散域。

对于收敛域上的每一个数x,函数项级数(1)都是一个收敛的常数项级数,因而有一确定的和。因此,在收敛域上函数项级数的和是x的函数,称为函数项级数的和函数,记作s(x),通常写成

希望我能帮助你解疑释惑。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式