已知,如下图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,3)、B(2,-2)、C(6,-4),求△ABC的面积。
展开全部
你好,很乐意回答您的问题!
该题目可归纳为题型,由平面3点求构成面积,具体解答方案如下:
首先根据题意正确的画出图形,再作辅助线,过A作AD⊥y轴,交y轴于D,过B作BE⊥y轴,交y轴于E,过C作CF⊥y轴,交y轴于F,然后,观察可知△ABC是直角梯形ADFC的组成部分,从而可得S△ABC=S梯形ADFC-S梯形ADEB-S梯形EFCB,进而可求出结果.
过程如下所示:
解:如图所示,
过A作AD⊥y轴,交y轴于D,过B作BE⊥y轴,交y轴于E,过C作CF⊥y轴,交y轴于F,
∴AD∥BE∥CF,
∴四边形DACF、四边形DABE和四边形BEFC为直角梯形,
∵A(5,3)、B(2,-2)、C(6,-4),
∴OD=3,OE=2,OF=4,AD=5,BE=2,CF=6,
∴DE=5,EF=2,DF=7,
∴S△ABC=S梯形ADFC-S梯形ADEB-S梯形EFCB
=1/2(CF+AD)•DF-1/2(BE+AD)•DE-1/2(BE+CF)•EF
=13
答:△ABC的面积是13.
该题目可归纳为题型,由平面3点求构成面积,具体解答方案如下:
首先根据题意正确的画出图形,再作辅助线,过A作AD⊥y轴,交y轴于D,过B作BE⊥y轴,交y轴于E,过C作CF⊥y轴,交y轴于F,然后,观察可知△ABC是直角梯形ADFC的组成部分,从而可得S△ABC=S梯形ADFC-S梯形ADEB-S梯形EFCB,进而可求出结果.
过程如下所示:
解:如图所示,
过A作AD⊥y轴,交y轴于D,过B作BE⊥y轴,交y轴于E,过C作CF⊥y轴,交y轴于F,
∴AD∥BE∥CF,
∴四边形DACF、四边形DABE和四边形BEFC为直角梯形,
∵A(5,3)、B(2,-2)、C(6,-4),
∴OD=3,OE=2,OF=4,AD=5,BE=2,CF=6,
∴DE=5,EF=2,DF=7,
∴S△ABC=S梯形ADFC-S梯形ADEB-S梯形EFCB
=1/2(CF+AD)•DF-1/2(BE+AD)•DE-1/2(BE+CF)•EF
=13
答:△ABC的面积是13.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询