已知函数f(x)=-xInx+ax在(0,e)上是增函数,函数g(x)=|e^x -a|+a^2/2.当x∈[0,In3]时,
1个回答
展开全部
f'(x) = -lnx -1 + a = 0 时有极值
x = e^(a-1)
又函数在(0,e)上单调,因此极值在定义域以外
e^(a-1) < 0 (不可能,排除) 或 e^(a-1) > e即
a - 1 > 1
a > 2
对于g(x),g(0) = |1 - a| + a^2/2 = a - 1 + a^2/2,g(ln3) = |3 - a| + a^2/2,又e^x为增函数,因此分段讨论
当 a > 3 时
g(x) = a - e^x + a^2/2,函数单调递减
m = g(ln3) = a - 3 + a^2/2
M = g(0) = a - 1 + a^2/2
M - m = 2不合题意,排除
当 a ≤ 3时
g(ln3) = 3 - a + a^2/2
设 e^x0 = a
x0 = lna
当 x < x0 时
g(x) = a - e^x + a^2/2
此时g(x)为单调递减
当 x ≥ x0 时
g(x) = e^x - a + a ^2/2
此时g(x)为单调递增
因此 x = x0 = lna 时有最小值
m = g(lna) = a^2/2
M 为 g(0)和g(ln3)中的一个,先设
M = g(0) = a - 1 + a^2/2
M - m = a - 1 = 3/2
a = 5/2 > 2, a < 3,
此时
g(0) = 5/2 - 1 + a^2/2 = 3/2 + a^2/2
g(ln3) = 3 - 5/2 + a^2/2 = 1/2 + a^2/2 < g(0)
符合题意
设 M = g(ln3) = 3 - a + a^2/2
M - m = 3 - a = 3/2
a = 3/2 < 2,不符合题意,排除
所以 a = 5/2
x = e^(a-1)
又函数在(0,e)上单调,因此极值在定义域以外
e^(a-1) < 0 (不可能,排除) 或 e^(a-1) > e即
a - 1 > 1
a > 2
对于g(x),g(0) = |1 - a| + a^2/2 = a - 1 + a^2/2,g(ln3) = |3 - a| + a^2/2,又e^x为增函数,因此分段讨论
当 a > 3 时
g(x) = a - e^x + a^2/2,函数单调递减
m = g(ln3) = a - 3 + a^2/2
M = g(0) = a - 1 + a^2/2
M - m = 2不合题意,排除
当 a ≤ 3时
g(ln3) = 3 - a + a^2/2
设 e^x0 = a
x0 = lna
当 x < x0 时
g(x) = a - e^x + a^2/2
此时g(x)为单调递减
当 x ≥ x0 时
g(x) = e^x - a + a ^2/2
此时g(x)为单调递增
因此 x = x0 = lna 时有最小值
m = g(lna) = a^2/2
M 为 g(0)和g(ln3)中的一个,先设
M = g(0) = a - 1 + a^2/2
M - m = a - 1 = 3/2
a = 5/2 > 2, a < 3,
此时
g(0) = 5/2 - 1 + a^2/2 = 3/2 + a^2/2
g(ln3) = 3 - 5/2 + a^2/2 = 1/2 + a^2/2 < g(0)
符合题意
设 M = g(ln3) = 3 - a + a^2/2
M - m = 3 - a = 3/2
a = 3/2 < 2,不符合题意,排除
所以 a = 5/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询