、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n
、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:(1)以x、m、n为边长的三角形是什么三角形?(请证明)(2)...
、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:
(1)以x、m、n为边长的三角形是什么三角形?(请证明)
(2)如果该三角形中有一个内角为60°,求AM:AB。 展开
(1)以x、m、n为边长的三角形是什么三角形?(请证明)
(2)如果该三角形中有一个内角为60°,求AM:AB。 展开
2个回答
展开全部
要回家了,先答第一问吧
解:
(1)
如图:作△ACM≌△BCD,
∴∠ACM=∠BCD,∠A=∠CBD=45°,CM=CD,AM=BD=m,
∵∠ACB=90°, ∠MCN=45°
∴∠ACM+∠NCB =45°
∴∠NCD=∠BCD+∠NCB =45°
∴∠MCN=∠NCD =45°,
又∵CN=CN,
∴△MNC≌△DNC,
∴MN=ND=x,
又∵∠DBN=∠CBA+∠CBD= 45°+45°=90°,
∴DN^2=DB^2+NB^2
∴MN^2=AM^2+NB^2
∴x^2=m^2+n^2
∴以x、m、n为边长的三角形是直角三角形
到家了,再作第二问
(2)、
如果该三角形中有一个内角为60°,则另一内角为30°,斜边为x,
如果设n=x/2,则m=(√3/2)x
AM/AB=m/(m+x+n)
=(√3/2)x /[(√3/2)x+x+x/2]
=(√3/2) /[√3/2+1+1/2]
=(√3-1)/2
如果设m=x/2, 则n=(√3/2)x
AM/AB=m/(m+x+n)
=(x/2)/[x/2+x+(√3/2)x]
=(3-√3)/6
展开全部
是直角三角形.
将△CNB绕点C旋转90°到△CN'A(A点旋转到B,N点旋转到N')
则△CNB≌△CN'A,
∴AN'=BN=n,N'C=NC,∠B=∠CAN'=45°,∠ACB=∠BCN,
∴∠N'AB=∠CAN'+∠CAB=∠B+∠CAB=90°,
∴△AN'M是直角三角形,
∵∠MCN=45°,
∴∠ACM+∠BCN=90°-45°=45°,
∴∠N'CM=45°=∠MCN,
∴△MN'C≌△MNC,
∴MN'=MN=x,
∴△AMN'的三边长分别为m,n,x,且N'AM是直角,
∴以x,m,n为边长的三角形是直角三角形.
将△CNB绕点C旋转90°到△CN'A(A点旋转到B,N点旋转到N')
则△CNB≌△CN'A,
∴AN'=BN=n,N'C=NC,∠B=∠CAN'=45°,∠ACB=∠BCN,
∴∠N'AB=∠CAN'+∠CAB=∠B+∠CAB=90°,
∴△AN'M是直角三角形,
∵∠MCN=45°,
∴∠ACM+∠BCN=90°-45°=45°,
∴∠N'CM=45°=∠MCN,
∴△MN'C≌△MNC,
∴MN'=MN=x,
∴△AMN'的三边长分别为m,n,x,且N'AM是直角,
∴以x,m,n为边长的三角形是直角三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询