
3个回答
展开全部
f(x)=1+x/(x²+1)+sinx ,(x∈R)
设g(x)=x/(x²+1)+sinx
g(-x)=-x/(x²+1)+sin(-x)=-g(x)
∴g(x)是奇函数
设g(x)的最大值为M,
根据奇函数图像关于原点对称性质
那么g(x)的最小值为-M
而f(x)max=1+g(x)max=1+M
f(x)min=1+f(x)min=1-M
∴f(x)max+f(x)min=1+M+1-M=2
设g(x)=x/(x²+1)+sinx
g(-x)=-x/(x²+1)+sin(-x)=-g(x)
∴g(x)是奇函数
设g(x)的最大值为M,
根据奇函数图像关于原点对称性质
那么g(x)的最小值为-M
而f(x)max=1+g(x)max=1+M
f(x)min=1+f(x)min=1-M
∴f(x)max+f(x)min=1+M+1-M=2
2013-02-11
展开全部
f(x)=1+x/(x²+1)+sinx ,(x∈R)
设g(x)=x/(x²+1)+sinx
g(-x)=-x/(x²+1)+sin(-x)=-g(x)
∴g(x)是奇函数
设g(x)的最大值为M,
根据奇函数图像关于原点对称性质
那么g(x)的最小值为-M
而f(x)max=1+g(x)max=1+M
f(x)min=1+f(x)min=1-M
∴f(x)max+f(x)min=1+M+1-M=2
设g(x)=x/(x²+1)+sinx
g(-x)=-x/(x²+1)+sin(-x)=-g(x)
∴g(x)是奇函数
设g(x)的最大值为M,
根据奇函数图像关于原点对称性质
那么g(x)的最小值为-M
而f(x)max=1+g(x)max=1+M
f(x)min=1+f(x)min=1-M
∴f(x)max+f(x)min=1+M+1-M=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询