已知函数:f(x)=cos方x+√3sinx·cosx (1).求f(x)的值及f(x)的最小正周期
2个回答
展开全部
f(x)=cos方x+√3sinx·cosx
=1/2(cos2x-1)+√3/2 sin2x
=sinπ/3cos2x+cosπ/3sin2x-1/2
=sin(2x+π/3)-1/2
(1)
当sin(2x+π/3)=1时得最大值1/2
当sin(2x+π/3)=-1时昨最小值-3/2
所以f(x)的值域是[-3/2,1/2]
(2)
最小正周期是T=2π/2=π
=1/2(cos2x-1)+√3/2 sin2x
=sinπ/3cos2x+cosπ/3sin2x-1/2
=sin(2x+π/3)-1/2
(1)
当sin(2x+π/3)=1时得最大值1/2
当sin(2x+π/3)=-1时昨最小值-3/2
所以f(x)的值域是[-3/2,1/2]
(2)
最小正周期是T=2π/2=π
追问
对吗???“f(x)=cos方x+√3sinx·cosx
=1/2(cos2x-1)+√3/2 sin2x”不对吧
cos方x=(1+cos方x)/2
追答
我晕,我做错了。
f(x)=cos方x+√3sinx·cosx
=1/2(cos2x+1)+√3/2 sin2x
=sinπ/3cos2x+cosπ/3sin2x+1/2
=sin(2x+π/3)+1/2
(1)
当sin(2x+π/3)=1时得最大值3/2
当sin(2x+π/3)=-1时昨最小值-1/2
所以f(x)的值域是[-1/2,3/2]
(2)
最小正周期是T=2π/2=π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询