高等数学(上):微分方程题,求解
1个回答
展开全部
对应齐次方程的特征方程为 λ2-4λ+3=0,
求解可得,其特征根为 λ1=1,λ2=3,
则对应齐次方程的通解为 y1=C1ex+C2e3x.
因为非齐次项为 f(x)=e2x,且 2 不是特征方程的根,
故设原方程的特解为 y*=Ae2x,
代入原方程可得 A=-2,
所以原方程的特解为 y*=-2e2x.
故原方程的通解为 y=y1+y*=C1ex+C2e3x -2e2x,其中C1,C2为任意常数.
求解可得,其特征根为 λ1=1,λ2=3,
则对应齐次方程的通解为 y1=C1ex+C2e3x.
因为非齐次项为 f(x)=e2x,且 2 不是特征方程的根,
故设原方程的特解为 y*=Ae2x,
代入原方程可得 A=-2,
所以原方程的特解为 y*=-2e2x.
故原方程的通解为 y=y1+y*=C1ex+C2e3x -2e2x,其中C1,C2为任意常数.
追答
对应齐次方程的特征方程为 λ^2-4λ+3=0,
求解可得,其特征根为 λ1=1,λ2=3,
则对应齐次方程的通解为 y1=C1e^x+C2e^3x.
因为非齐次项为 f(x)=e^2x,且 2 不是特征方程的根,
故设原方程的特解为 y*=Ae^2x,
代入原方程可得 A=-2,
所以原方程的特解为 y*=-2e^2x.
故原方程的通解为 y=y1+y*=C1e^x+C2e^3x -2e^2x,其中C1,C2为任意常数.
追问
请问带入原方程后,A是怎么求的
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询