设0<X1<3,X(n+1)=√[Xn(3-Xn)] (n=1,2......) 证明{Xn}的极限存在,并求此极限
证明:因为0<x1<3所以x(n+1)<=[xn+(3-xn)]/2=3/2所以{xn}有界又x(n+1)=√[Xn(3-Xn)]>=√[Xn(3-3/2)]=√(3/2...
证明:因为0<x1<3所以x(n+1)<=[xn+(3-xn)]/2=3/2
所以{xn}有界
又x(n+1)=√[Xn(3-Xn)] >=√[Xn(3-3/2)] =√(3/2)xn>=xn
所以{xn}递增
单调有界数列必有极限,设x=limxn=limx(n+1),则
x=√x(3-x)解得x=3/2
所以limxn=3/2
第一步就看不懂啦,x(n+1)<=[xn+(3-xn)]/2是为什么啊?求大神! 展开
所以{xn}有界
又x(n+1)=√[Xn(3-Xn)] >=√[Xn(3-3/2)] =√(3/2)xn>=xn
所以{xn}递增
单调有界数列必有极限,设x=limxn=limx(n+1),则
x=√x(3-x)解得x=3/2
所以limxn=3/2
第一步就看不懂啦,x(n+1)<=[xn+(3-xn)]/2是为什么啊?求大神! 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询