函数fx=2sinxcosx+sin(π/2-2x) 求 f(π/4)的值 求fx的最小正周期和最小值 求fx的单调递增区间
2个回答
展开全部
f(x)=2sinxcosx+sin(π/2-2x)
=sin2x+cos2x
=√2(√2/2*sin2x+√2/2*cos2x)
=√2(sin2xcosπ/4+cos2xsinπ/4)
=√2sin(2x+π/4)
f(π/4)=√2sin(2*π/4+π/4)
=√2sin(3π/4)
=√2*√2/2
=1
T=2π/2=π
-1<=sin(2x+π/4)<=1
-√2<=√2sin(2x+π/4)<=√2
所以f(x)的最小值为:-√2
f(x)的单调递增区间:
2kπ-π/2<2x+π/4<2kπ+π/2
2kπ-3π/4<2x<2kπ+π/4
kπ-3π/8<x<kπ+π/8
=sin2x+cos2x
=√2(√2/2*sin2x+√2/2*cos2x)
=√2(sin2xcosπ/4+cos2xsinπ/4)
=√2sin(2x+π/4)
f(π/4)=√2sin(2*π/4+π/4)
=√2sin(3π/4)
=√2*√2/2
=1
T=2π/2=π
-1<=sin(2x+π/4)<=1
-√2<=√2sin(2x+π/4)<=√2
所以f(x)的最小值为:-√2
f(x)的单调递增区间:
2kπ-π/2<2x+π/4<2kπ+π/2
2kπ-3π/4<2x<2kπ+π/4
kπ-3π/8<x<kπ+π/8
追问
谢谢哦 好厉害
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询