f(x)=x^4+ax^3+bx^2+cx+d,f(1)=1,f(2)=2.f(3)=3,求f(4)+f(0),求思路分析
1个回答
展开全部
解:f(1)=1+a+b+c+d=1 → a+b+c+d=0 (1)
f(2)=16+8a+4b+2c+d=2 (2)
f(3)=81+27a+9b+3c+d=3 (3)
f(4)=256+64a+16b+4c+d
f(0)=d
由(1)(2)(3)这三个式子可得
a=-6-(1/6)d
b=11+d
c=-5-(11/6)d
将其代入即可得
f(4)+f(0)=256+64a+16b+4c+2d
=2×(128+32a+8b+2c+d)
=2×(128+31a+7b+c)
=2×[128-186-(31/6)d+77+7d-5-(11/6)d]
=28
f(2)=16+8a+4b+2c+d=2 (2)
f(3)=81+27a+9b+3c+d=3 (3)
f(4)=256+64a+16b+4c+d
f(0)=d
由(1)(2)(3)这三个式子可得
a=-6-(1/6)d
b=11+d
c=-5-(11/6)d
将其代入即可得
f(4)+f(0)=256+64a+16b+4c+2d
=2×(128+32a+8b+2c+d)
=2×(128+31a+7b+c)
=2×[128-186-(31/6)d+77+7d-5-(11/6)d]
=28
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询