不定积分x乘以arctanx dx怎么求?
1个回答
展开全部
∫ xarctanx dx
= ∫ arctanx d(x²/2)
= (1/2)x²arctanx - (1/2)∫ x² d(arctanx)
= (1/2)x²arctanx - (1/2)∫ x²/(x² + 1) dx
= (1/2)x²arctanx - (1/2)∫ [(x² + 1) - 1]/(x² + 1) dx
= (1/2)x²arctanx - (1/2)∫ dx + (1/2)∫ dx/(x² + 1)
= (1/2)x²arctanx - x/2 + (1/2)arctanx + C
= ∫ arctanx d(x²/2)
= (1/2)x²arctanx - (1/2)∫ x² d(arctanx)
= (1/2)x²arctanx - (1/2)∫ x²/(x² + 1) dx
= (1/2)x²arctanx - (1/2)∫ [(x² + 1) - 1]/(x² + 1) dx
= (1/2)x²arctanx - (1/2)∫ dx + (1/2)∫ dx/(x² + 1)
= (1/2)x²arctanx - x/2 + (1/2)arctanx + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询