如图,三角形ABC为等边三角形,D为BC上任一点,∠ADE=60°,边DE与角ACB外角的角平分线
(1)求证:AD=DE
(2)若点D在CB的延长线上,(1)的结论是否依然成立?请画出图形,若成立,请给予证明,若不成立,请说明理由 展开
(1)证明:
如图,在AB上截取BH=BD
∵⊿ABC是等边三角形
∴∠B=60º,ZB=AC,∠ACB=60º
又∵BH=BD
∴AH=DC
∵CE平分∠ACB的外角,且∠ACB=60º
∴∠ACE=60º
∴∠DCE=∠ACB+∠ACE=120º
∵∠B=60º,BH=BD
∴⊿BHD是等边三角形
∴∠BHD=60º
∴∠AHD=60º
∴∠AHD=∠DCE
∵∠ADC=∠ADE+∠EDC
且∠ADC=∠HAD+∠B
∴∠ADE+∠EDC=∠HAD+∠B
又∵∠ADE=∠B=60º
∴∠HAD=∠EDC
在⊿AHD与⊿DCE中
﹛∠HAD=∠EDC
﹛∠AHD=∠DCE
﹛AH=DC
∴⊿AHD≌⊿DCE﹙AAS﹚
∴AD=DE
(2)
不变,如图,在AB的延长线上截取BH=BD
∵⊿ABC是等边三角形
∴∠2=∠1=60º,AB=BC,∠ABC=60º
又∵BH=BD
∴AH=CD且⊿BDH是等边三角形
∴∠H=60º,∠BDH=60º
又∵CE平分∠ACB的外角,且∠ACB=60º
∴∠3=60º
∴∠3=∠H
∵∠ADH=∠ADE+∠BDH﹣∠4=120º-∠4
且∠DEC=180º-∠3-∠4=120º-∠4
∴∠ADH=∠DEC
∴在⊿AHD与⊿DCE中
﹛∠3=∠H
﹛∠ADH=∠DEC
﹛AH=CD
∴⊿AHD≌⊿DCE﹙AAS﹚
∴AD=DE
如图,在AB上截取BH=BD
∵⊿ABC是等边三角形
∴∠B=60º,ZB=AC,∠ACB=60º
又∵BH=BD
∴AH=DC
∵CE平分∠ACB的外角,且∠ACB=60º
∴∠ACE=60º
∴∠DCE=∠ACB+∠ACE=120º
∵∠B=60º,BH=BD
∴⊿BHD是等边三角形
∴∠BHD=60º
∴∠AHD=60º
∴∠AHD=∠DCE
∵∠ADC=∠ADE+∠EDC
且∠ADC=∠HAD+∠B
∴∠ADE+∠EDC=∠HAD+∠B
又∵∠ADE=∠B=60º
∴∠HAD=∠EDC
在⊿AHD与⊿DCE中
﹛∠HAD=∠EDC
﹛∠AHD=∠DCE
﹛AH=DC
∴⊿AHD≌⊿DCE﹙AAS﹚
∴AD=DE
﹙2﹚
不变,如图,在AB的延长线上截取BH=BD
∵⊿ABC是等边三角形
∴∠2=∠1=60º,AB=BC,∠ABC=60º
又∵BH=BD
∴AH=CD且⊿BDH是等边三角形
∴∠H=60º,∠BDH=60º
又∵CE平分∠ACB的外角,且∠ACB=60º
∴∠3=60º
∴∠3=∠H
∵∠ADH=∠ADE+∠BDH﹣∠4=120º-∠4
且∠DEC=180º-∠3-∠4=120º-∠4
∴∠ADH=∠DEC
∴在⊿AHD与⊿DCE中
﹛∠3=∠H
﹛∠ADH=∠DEC
﹛AH=CD
∴⊿AHD≌⊿DCE﹙AAS﹚
∴AD=DE
这个已知条件不对哈