用定积分的分部积分法求上限丌,下限0,x^2cos2x dx的定积分
展开全部
∫x²cos2xdx
=1/2·∫x²dsin2x
=1/2·x²sin2x-1/2·∫sin2xdx²
=1/2·x²sin2x-∫xsin2xdx
=1/2·x²sin2x+1/2∫xdcos2x
=1/2·x²sin2x+1/2xcos2x-1/2∫cos2xdx
=1/2·x²sin2x+1/2xcos2x-1/4∫dsin2x
=1/2·x²sin2x+1/2xcos2x-1/2sin2x
所以求定积分x²cos2xdx上限为π下限为0
=(1/2·x²sin2x+1/2xcos2x-1/2cos2x) |(0到π)
=-π
=1/2·∫x²dsin2x
=1/2·x²sin2x-1/2·∫sin2xdx²
=1/2·x²sin2x-∫xsin2xdx
=1/2·x²sin2x+1/2∫xdcos2x
=1/2·x²sin2x+1/2xcos2x-1/2∫cos2xdx
=1/2·x²sin2x+1/2xcos2x-1/4∫dsin2x
=1/2·x²sin2x+1/2xcos2x-1/2sin2x
所以求定积分x²cos2xdx上限为π下限为0
=(1/2·x²sin2x+1/2xcos2x-1/2cos2x) |(0到π)
=-π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询