已知函数f(x)=2sin²(π/4+x)-(根号3*cos2x),x∈[π/4,π/2] (1).求f(x)的最大值和最小值
2个回答
2013-02-11
展开全部
f(x) = [sin(x) + cos(x)]^2 - 3^(1/2)cos(2x)
= 1 + sin(2x) - 3^(1/2)cos(2x)
= 1 + 2[sin(2x)/2 - 3^(1/2)cos(2x)/2]
= 1 + 2sin(2x - π/3)
π/4 <= x <= π/2,
π/2 <= 2x <= π,
π/6 <= 2x - π/3 <= 2π/3
2 = 1 + 2sin(π/6) <= 1 + 2sin(2x - π/3) = f(x) <= 1 + 2sin(π/2) = 3,
当 x = π/4时,f(x)取得最小值2,
当 x = 5π/12时,f(x)取得最大值3.
|f(x)-m|<2
m <= 2时,2 > |f(x) - m| = f(x) - m >= 2 - m, m > 0.
0 < m <= 2满足要求。
m >= 3时,2 > |f(x) - m| = m - f(x) >= m - 3, m < 5.
3 <= m < 5满足要求。
2 < m < 3时,-2 > -m > -3
-1 = 2 - 3 < 2 - m <= f(x) - m <= 3 - m < 3 - 2 = 1,
|f(x) - m| < 1 < 2,满足要求。
综合,知,
0 < m < 5,满足题意。
= 1 + sin(2x) - 3^(1/2)cos(2x)
= 1 + 2[sin(2x)/2 - 3^(1/2)cos(2x)/2]
= 1 + 2sin(2x - π/3)
π/4 <= x <= π/2,
π/2 <= 2x <= π,
π/6 <= 2x - π/3 <= 2π/3
2 = 1 + 2sin(π/6) <= 1 + 2sin(2x - π/3) = f(x) <= 1 + 2sin(π/2) = 3,
当 x = π/4时,f(x)取得最小值2,
当 x = 5π/12时,f(x)取得最大值3.
|f(x)-m|<2
m <= 2时,2 > |f(x) - m| = f(x) - m >= 2 - m, m > 0.
0 < m <= 2满足要求。
m >= 3时,2 > |f(x) - m| = m - f(x) >= m - 3, m < 5.
3 <= m < 5满足要求。
2 < m < 3时,-2 > -m > -3
-1 = 2 - 3 < 2 - m <= f(x) - m <= 3 - m < 3 - 2 = 1,
|f(x) - m| < 1 < 2,满足要求。
综合,知,
0 < m < 5,满足题意。
展开全部
sin方转换成两倍角,然后和化积。
更多追问追答
追问
怎么换成两倍角
追答
f(x)=1-cos(2x+PI/2)-gh(3)*cos(2x)
=1+sin(2x)-gh(3)cos(2x)=1-2*(gh(3)/2*cos(2x)-1/2sin(2x))
=1-2*(cos(PI/6)cos(2x)-sin(PI/6)*sin(2x)
接下去你自己来。
gh表示根号,PI表示圆周率
来自:求助得到的回答
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询