1个回答
展开全部
解:(I)证明:连接DC1,因为ABCD-A1B1C1D1是长方体,且CC1=C1E,
所以DD1∥C1E且DD1=C1E,DD1EC1是平行四边形,DC1∥D1E.
又因为AD∥B1C1且AD=B1C1,ADC1B1是平行四边形,DC1∥AB1,
所以D1E∥AB1.
因为AB1⊂平面ACB1,D1E⊄平面ACB1,
所以D1E∥平面ACB1.
所以DD1∥C1E且DD1=C1E,DD1EC1是平行四边形,DC1∥D1E.
又因为AD∥B1C1且AD=B1C1,ADC1B1是平行四边形,DC1∥AB1,
所以D1E∥AB1.
因为AB1⊂平面ACB1,D1E⊄平面ACB1,
所以D1E∥平面ACB1.
追问
②求证:平面D1B1E⊥平面DCB1;
③求四面体D1B1AC的体积.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询