已知O为坐标原点,A(0,2)、B(4,6),OM向量=t1OA向量+t2AB向量
问:若t1=a^2,求当OM向量⊥AB向量且OM向量的模=4根号2时a的值答案好像是±2,求过程,要详细~...
问:若t1=a^2,求当OM向量⊥AB向量且OM向量的模=4根号2时a的值
答案好像是±2,求过程,要详细~ 展开
答案好像是±2,求过程,要详细~ 展开
1个回答
展开全部
向量AB=(4,4),
OM=t1OA+t2AB=t1(0,2)+t2(4,4)=(4t2,2t1+4t2)
OM与AB垂直,则:OM dot AB=0
即:(4t2,2t1+4t2) dot (4,4)=16t2+8t1+16t2=8t1+32t2=0,故:t1+4t2=0
即:t1=-4t2,故:t1=a^2,t2=-a^2/4
|OM|^2=16t2^2+4t1^2+16t2^2+16t1t2=4a^4-16(a^2*a^2/4)+32(a^4/16)
=2a^4=32,即:a^4=16,故:a^2=4,故a=2或-2
OM=t1OA+t2AB=t1(0,2)+t2(4,4)=(4t2,2t1+4t2)
OM与AB垂直,则:OM dot AB=0
即:(4t2,2t1+4t2) dot (4,4)=16t2+8t1+16t2=8t1+32t2=0,故:t1+4t2=0
即:t1=-4t2,故:t1=a^2,t2=-a^2/4
|OM|^2=16t2^2+4t1^2+16t2^2+16t1t2=4a^4-16(a^2*a^2/4)+32(a^4/16)
=2a^4=32,即:a^4=16,故:a^2=4,故a=2或-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询