设函数f(x)可导,满足x(e^x)ydx+f(x)dy=du(x,y),且f(0)=0,求f(x)及u(x,y)) 40
1个回答
展开全部
?【(xex+f(x))y】/?y=?f(x)/?x
xex+f(x)=f'(x)
f'-f-xe^x=0 . ①
f'=f
f=c(x)e^x =>①
c'e^x=xe^x, c'=x
c(x)=x2/2+C
f(x)= (x2/2+C)e^x.
f(0)=0 , C=0 =>f(x)= (x2/2)e^x. .②
u(x,y)=∫【0,0;x,y】(x+x2/2)e^xydx+(x2/2)e^xdy
=∫[0,x]0dx+∫[0,y](x2/2)e^xdy
=(x2y/2)e^x③
f(x)及u(x,y)):② ③
xex+f(x)=f'(x)
f'-f-xe^x=0 . ①
f'=f
f=c(x)e^x =>①
c'e^x=xe^x, c'=x
c(x)=x2/2+C
f(x)= (x2/2+C)e^x.
f(0)=0 , C=0 =>f(x)= (x2/2)e^x. .②
u(x,y)=∫【0,0;x,y】(x+x2/2)e^xydx+(x2/2)e^xdy
=∫[0,x]0dx+∫[0,y](x2/2)e^xdy
=(x2y/2)e^x③
f(x)及u(x,y)):② ③
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询