设Sn为数列{an}的前n项和,且对任意n∈N*,都有Sn=2(an-1),记f(n)=(3^n)/[(2^n)×Sn]
1个回答
展开全部
对任意n∈N*,都有Sn=2(an-1),①
n=1时a1=2(a1-1),a1=2.
n>1时S<n-1>=2(a<n-1>-1),②
①-②,an=2an-2a<n-1>,
an=2a<n-1>,
∴an=2^n.
∴f(n)=(3/4)^n,
f(k)+f(2n-k)
=(3/4)^k+(3/4)^(2n-k)
>=2[(3/4)^(k+2n-k)]^0.5
=2*(3/4)^n
=2f(n),k=1,2,……,n,
累加得f(1)+f(2)+…+f(2n-1)≥(2n-1)×f(n)
n=1时a1=2(a1-1),a1=2.
n>1时S<n-1>=2(a<n-1>-1),②
①-②,an=2an-2a<n-1>,
an=2a<n-1>,
∴an=2^n.
∴f(n)=(3/4)^n,
f(k)+f(2n-k)
=(3/4)^k+(3/4)^(2n-k)
>=2[(3/4)^(k+2n-k)]^0.5
=2*(3/4)^n
=2f(n),k=1,2,……,n,
累加得f(1)+f(2)+…+f(2n-1)≥(2n-1)×f(n)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询