
求解不定积分 20
展开全部
1、第二类换元积分法
令t=√(x-1),则x=t^2+1,dx=2tdt
原式=∫(t^2+1)/t*2tdt
=2∫(t^2+1)dt
=(2/3)*t^3+2t+C
=(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数
2、第一类换元积分法
原式=∫(x-1+1)/√(x-1)dx
=∫[√(x-1)+1/√(x-1)]d(x-1)
=(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数
3、分部积分法
原式=∫2xd[√(x-1)]
=2x√(x-1)-∫2√(x-1)dx
=2x√(x-1)-(4/3)*(x-1)^(3/2)+C,其中C是你任意常数
令t=√(x-1),则x=t^2+1,dx=2tdt
原式=∫(t^2+1)/t*2tdt
=2∫(t^2+1)dt
=(2/3)*t^3+2t+C
=(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数
2、第一类换元积分法
原式=∫(x-1+1)/√(x-1)dx
=∫[√(x-1)+1/√(x-1)]d(x-1)
=(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数
3、分部积分法
原式=∫2xd[√(x-1)]
=2x√(x-1)-∫2√(x-1)dx
=2x√(x-1)-(4/3)*(x-1)^(3/2)+C,其中C是你任意常数

2025-04-21 广告
积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等。 球壁上开一个或几个窗孔,用作进光孔和放置光接收器件的接收孔。积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。球内壁上涂以理想的漫反射材料...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询